Skip to main content

Deep Learning Example

The INCD-Lisbon facility provide a few GPU, check the Comput Node Specs page.

Login on the submit node

Login on the cluster submition node, check the How to Access page for more information:

$ ssh -l <username> cirrus8.a.incd.pt
[username@cirrus01 ~]$ _

Alternatives to run the Deep Learning example

We have alternatives to run the Deep Learning example, or any other python based script:

  1. prepare a user python virtual environment on home directory and launch a batch job;

The next three sections shows how to run the example for each method.

1) Run a Deep Learning job using a prepared CVMFS python virtual environment

Instead of preparing an user python virtual environment we can use the environment already available on the system, named python/3.10.13, check it with the command

[username@cirrus08 ~]$ module avail
---------------- /cvmfs/sw.el8/modules/hpc/main ------------------
...
intel/oneapi/2023    python/3.8          udocker/alphafold/2.3.2
julia/1.6.7          python/3.10.13 (D)
...

We will find other python version, namely version 3.7 and 3.8, this version do not contain the tensorflo module due to python version incompatibility.

We will change the submit script dl.sh to the following:

[username@cirrus08 dl]$ vi dl.sh
#!/bin/bash
#SBATCH -p gpu
#SBATCH --gres=gpu
#SBATCH --mem=64G

module load python/3.10.7
python run.py

[username@cirrus08 dl]$ ls -l
-rwxr-----+ 1 username usergroup   124 Feb 26 16:44 dl.sh
-rw-r-----+ 1 username usergroup  1417 Feb 26 16:46 run.py
Submit the Job
[username@cirrus08 dl]$ sbatch dl.sh
Submitted batch job 15135448
JOBID    PARTITION NAME       USER        ST TIME       NODES CPUS TRES_PER_NODE  NODELIST
15290034 gpu       dl.sh      jpina       PD 0:00       1     1    gres/gpu                  
Check Job results

On completion check results on standard output and error files:

[username@cirrus08 dl]$ ls -l
-rwxr-----+ 1 username usergroup   124 Feb 26 16:44 dl.sh
-rw-r-----+ 1 username usergroup  1417 Feb 26 16:46 run.py
-rw-r-----+ 1 username usergroup 18000 Feb 26 18:51 slurm-15135448.out

and procceed as in the previous example.