import numpy as np import keras as K import tensorflow as tf np.random.seed(123) # for reproducibility from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras.datasets import mnist from keras import optimizers (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(X_train.shape[0], 28, 28,1) X_test = X_test.reshape(X_test.shape[0], 28, 28,1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 Y_train = np_utils.to_categorical(y_train, 10) Y_test = np_utils.to_categorical(y_test, 10) model = Sequential() model.add(Convolution2D(48, 8, 8, activation='elu', input_shape=(28,28,1))) #model.add(MaxPooling2D(pool_size=(4,4))) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(96, activation='elu')) #32 original model.add(Dropout(0.5)) #original 0.5 model.add(Dense(10,activation='softmax')) model.compile(loss='categorical_crossentropy',optimizer='nadam',metrics=['accuracy']) model.summary() model.fit(X_train, Y_train,batch_size=400, epochs=5, verbose=1) print(model.evaluate(X_test, Y_test, verbose=1)) #for i in range(5): # model.fit(X_train, Y_train,batch_size=2000, epochs=5, verbose=1) # print(model.evaluate(X_test, Y_test, verbose=1))