Deep Learning Example
Login on the submit node
Login on the cluster submition node, check the page How to Access for more information:
$ ssh -l <username> hpc7.ncg.ingrid.pt
[username@hpc7 ~]$ _
Prepare a python virtual environment
The default python version for CentOS 7.x is 2.7.5 which is not suitable for our example that rely on version 3.6 and up. So, we will create a python virtual environment and include needed components:
[username@hpc7 ~]$ scl enable rh-python36 bash
[username@hpc7 ~]$ python -m venv ~/pvenv
[username@hpc7 ~]$ . ~/pvenv/bin/activate
[username@hpc7 ~]$ pip install --upgrade pip
[username@hpc7 ~]$ pip install --upgrade setuptools
[username@hpc7 ~]$ pip install tensorflow-gpu
[username@hpc7 ~]$ pip install keras
This opperation is performed only once, the python virtual environment will be reused all over your jobs.
Submit a Job to install TensorFlow and Keras on the python virtual envionment
Since we do not have direct access to the GPU on the submit node then we have to submit one job, and only one, to install TensorFlow and Keras on our python virtual environment.
Create a submit script like as showed bellow and submit it:
[username@hpc7 ~]$ vi pip_install.sh
#!/bin/bash
#$ -q tesla
scl enable rh-python36 bash
. ~/pvenv/bin/activate
pip install tensorflow-gpu
pip install keras
[username@hpc7 ~]$ qsub pip_install.sh
Check the job output files after finished for correct completion, if something is wrong try to solve the problem or request support from helpdesk@incd.pt. You can also include in the job the full python virtual environment preparation as showed on the previous section if you like.
Check the python virtual environment
You may check if the python virtual environment is working as expected, for example:
[username@hpc7 ~]$ python --version
Python 2.7.5
[username@hpc7 ~]$ scl enable rh-python36 bash
[username@hpc7 ~]$ python --version
Python 3.6.9
[username@hpc7 ~]$ . ~/pvenv/bin/activate
[username@hpc7 ~]$ pip list
Package Version
-------------------- ----------
...
Keras 2.3.1
Keras-Applications 1.0.8
Keras-Preprocessing 1.1.0
...
setuptools 44.0.0
...
tensorboard 2.0.2
tensorflow-estimator 2.0.1
tensorflow-gpu 2.0.0
Prepare your code
Choose a working directory for your code, for the purpose of this example we will run a deep learning python script named run.py, create also a submit script:
[username@hpc7 ~]$ mkdir dl
[username@hpc7 ~]$ cd dl
[username@hpc7 dl]$ wget https://wiki.incd.pt/attachments/70
[username@hpc7 dl]$ vi dl.sh
#!/bin/bash
#$ -q gpu
scl enable rh-python36 bash
. ~/pvenv/bin/activate
module load cuda-10.2
python run.py
[username@hpc7 dl]$ ls -l
-rwxr-----+ 1 username hpc 514 Jan 5 13:42 dl.sh
-rw-r-----+ 1 username hpc 1378 Jan 5 15:42 run.py
Submit the Job
[username@hpc7 dl]$ qsub dl.sh
Your job 2027497 ("dl.sh") has been submitted
[username@hpc7 dl]$ qstat
job-ID prior name user state submit/start at queue slots ja-task-ID
----------------------------------------------------------------------------------
2027497 0.10134 dl.sh username r 01/06/2020 13:28:36 gpu@hpc046 1
Check Job results
On completion check results on standard output and error files:
[username@hpc7 dl]$ ls -l
-rwxr-----+ 1 username hpc 514 Jan 5 13:42 dl.sh
-rw-r-----+ 1 username hpc 1378 Jan 5 15:42 run.py
-rw-r-----+ 1 username hpc 4956 Jan 6 13:44 dl.sh.e2027497
-rw-r-----+ 1 username hpc 14009 Jan 6 13:44 dl.sh.o2027497