AlphaFold

1. Introduction
1. Environment

2. Data Base Location

3. run udocker.py

2. How to Run

1. Example on Partition "gpu"

2. Example on Partition "fct"

3. Example on Partition "hpc"

4. sbatch Options

3. Benchmarks

4. References

1. Introduction

The INCD team prepared a local installation of AlphaPhold using a container based on UDOCKER
(instead of DOCKER) and includes the Genetic Database.

The local installation provide the AlphaFold version 2.1.1 over a container based on Ubuntu
18.04 distribution with cuda-11.0 and cudnn-8.

The main resource target of AlphaFold is the GPU but the application also execute only on the

CPU although the performance is substantially worst, see the Benchmarks section bellow.

1.1 Environment

The environment is activate with command

$ module load udocker/alphaphold/2.1.1

this will activate automatically a virtual environment ready to start the AlphaFold container
throught the python script run_udocker.py.

1.2 Data Base Location

https://github.com/indigo-dc/udocker
https://www.docker.com/

The Genetic Database is installed bellow the filesystem directory

/users3/data/alphafold

on read-only mode, upgrades may be requested using the helpdesk@incd.pt address.

1.3 run_udocker.py Script

The run_udocker.py script was adapted from the run_docker.py script normally used by
AlphaFold with the docker container technology.

The run_udocker.py accept the same options as the run_docker.py script with a few minor
changes that we hope it will facilitate user interaction. The user may change the script behavour
throught environment variables or command line options, we can see only the changes bellow:

Optional environment variables:

Variable Name Default Value Comment
DOWNLOAD_DIR none Genetic database location (absolute
path)
OUPTPUT_DIR none Output results directory (absolute
path)

Command line options:

Command Option Mandatory Default Value Comment
--data_dir no /local/alphafold or Genetic database location,
/users3/data/alphafold takes precedence over

DOWNLOAD_DIR when both
are selected

--output_dir no <working_dir>/output Absolute path to the results
directory, takes precedence
over OUTPUT_DIR when
both are selected

44 The option --data_dir is required on the standard AlphaFold run_docker.py
script, we choose to select automatically the location of the genetic database
but the user may change this path throught the environment variable
DOWNLOAD_DIR or the command line option --data_dir. When possible, we
provide a local copy to the workernodes of the database directory in order to
improve job performance.

The AlphaFold standard output results directory location is /ftmp/alphafold by
default, please note that we change this location to the local working directory,
the user can select a different path throught the environment variable
OUTPUT_DIR or the command line option --output_dir.

2. How to Run

We only need a protein and a submition script, if we analyze multiple proteins on parallel it is
advise to submit then from different directory in order to avoid interference between runs.

2.1 Example on Partition "gpu"

Lets analyze the https://www.uniprot.org/uniprot/P19113 protein, for example.

Create a working directory and get the protein:

[user@cirrus ~]$ mkdir run_P19113
[user@cirrus ~1$ cd run_P19113

[user@cirrus run_P19113]$ wget -q https://www.uniprot.org/uniprot/P19113.fasta

Use your favority editor the create the submition script submit.sh*:

[user@cirrus run_P19113]$ emacs submit.sh
#!/bin/bash

#
#SBATCH --job-name=P19113

#SBATCH --partition=gpu
#SBATCH --mem=50G
#SBATCH --ntasks=4
#SBATCH --gres=gpu

#
module purge

module load udocker/alphafold/2.1.1

run_udocker.py --fasta_paths=P19113.fasta --max_template_date=2020-05-14

Finally, submit your job, check if it is running and wait for it:

[user@cirrus run_P19113]$ sbatch submit.sh

[user@cirrus run_P19113]$ squeue

https://wiki.incd.pt/P19113

When finish the local directory ./output will have the analyze results.

2.2 Example on Partition "fct"

[user@cirrus run_P19113]$ emacs submit.sh
#!/bin/bash
#

#SBATCH --job-name=P19113

#SBATCH --partition=fct

#SBATCH --qos=<qos>

#SBATCH --account=<account>[T}# optional on most cases
#SBATCH --mem=50G

#SBATCH --ntasks=4

#SBATCH --gres=gpu

#

module purge
module load udocker/alphafold/2.1.1
run_udocker.py --fasta_paths=P19113.fasta --max_template_date=2020-05-14

2.3 Example on Partition "hpc"

[user@cirrus run_P19113]$ emacs submit.sh
#!/bin/bash
#

#SBATCH --job-name=P19113
#SBATCH --partition=hpc
#SBATCH --mem=50G
#SBATCH --ntasks=4

#

module purge
module load udocker/alphafold/2.1.1
run_udocker.py --fasta_paths=P19113.fasta --max_template_date=2020-05-14

2.4 sbatch Options

--partition=XX

The best job performance is achivied on the gpu or fct partitions, the later is restricted to users
with a valid QOS.

The alphafold and also run on the hpc partition but is this case it will use only a slower CPU and
there is no GPU available, the total run time is roughly eight times greather when compared to
jobs executed on the gpu or fct partitions.

--mem=50G

The default job memory allocation per cpu depends on the used partition but it may be insuficient,
we recommend you to request 50GB of memory, the benchmarks sugest this value should be
enough on all cases.

--ntasks=4

Apparentelly this is the maximum number of tasks needed by the application, we didn't get any
noticible improvement when rising this parameter.

--gres=gpu

The partitions gpu and fct provide up to eight GPUs. The application was built for compute using
GPU, there is no point is requesting more than one GPU, we didn't notice any improvement on the
total run time. We also notice that the total compute time for both types of available GPUs is
similar.

The alphafold also run only on CPU but the total run time increase substantial, as seen on
benchmarks results bellow.

4. Benchmarks

We made some benchmarks with the protein P19113 in order to help users organizing their work.

The results bellow sugest that the best choice would be use four CPU tasks, one GPU and let the
system select the local copy of the genetic data base on the workernodes.

Since a GPU run takes roughly two hours and half then users may run up to thirty five protein
analyzes in one submit job, as long they are executed in sequence.

Partition CPU #CPU GPU #GPU #JOBS DOWNLOAD ELAPSED_TI
_DIR ME
gpu/fct EPYC_7552 4 Tesla_T4 1 1 /local/alphaf = 02:22:19
old
gpu/fct EPYC_7552 4 Tesla_V100 1 1 /local/alphaf = 02:38:21
S old
gpu/fct EPYC 7552 4 Tesla_ T4 2 1 /local/alphaf = 02:22:25

old

gpu/fct EPYC_7552 4 Tesla_T4 1 1 /users3/data 15:59:50

/alphafold
gpu/fct EPYC_7552 4 Tesla_V100 1 1 /users3/data 11:40:04
) /alphafold
gpu/fct EPYC_7552 4 Tesla_T4 2 1 /users3/data 14:58:52
/alphafold
gpu/fct EPYC_ 7552 4 0 1 /local/alphaf 16:17:32
old
gpu/fct EPYC_7552 4 0 1 /users3/data 18:22:07
/alphafold
gpu/fct EPYC_7552 4 0 4 /local/alphaf 17:53:25

old

5. References

https://github.com/deepmind/alphafold

https://github.com/indigo-dc/udocker

https://www.docker.com

https://www.uniprot.org/uniprot

https://www.uniprot.org/uniprot/P19113

Revision #47
Created 29 November 2021 14:16:40 by Jodo Paulo Martins
Updated 7 December 2021 17:24:43 by Jodo Paulo Martins

https://github.com/deepmind/alphafold
https://github.com/indigo-dc/udocker
https://www.docker.com
https://www.uniprot.org/uniprot
https://wiki.incd.pt/P19113

