Manage slurm jobs

How to handle jobs management using slurm batch system. Used at Minho and ISEC and Lisbon
data center

e Slurm

e Jobs information

e My first slurm job

overview of the resources offered

show job accounting data

stop or cancel jobs

Show jobs information in queue

How to run parallel job's with srun

Preparing the Environment

Interactive Sessions

e Job pipeline using slurm dependencies

e Use of user QOS for CPU jobs




Slurm

Slurm's architecture

Slurm is made of a slurmd daemon running on each compute node and a central slurmctld daemon
running on a management node.

Node

In slurm a node is a compute resource, usually defined by particular consumable resources, i.e.
cores, memory, etc...

Partitions

A partition (or queue) is a set of nodes with usually common characteristics and/or limits. Partitions
group nodes into logical sets. Nodes are shareable between partitions.

Jobs

Jobs are allocations of consumable resources from the nodes and assigned to a user under the
specified conditions.

Job Steps

A job step is a single task within a job. Each job can have multiple tasks (steps) even parallel ones.

Common user commands:

e sacct: report job accounting information about running or completed jobs.

e salloc: allocate resources for a job in real time. Typically used to allocate resources and
spawn a shell. Then the shell is used to execute commands to launch parallel tasks.

e sbatch: submit a job script for later execution. The script typically contains the tasks plus
and the environment definitions needed to execute the job.

e scancel: cancel a pending or running job or job step.
e sinfo: overview of the resources (node and partitions).

e squeue: used to report the state of running and pending jobs.


https://wiki.incd.pt/books/manage-jobs/page/sacct
https://wiki.incd.pt/books/manage-jobs/page/scancel
https://wiki.incd.pt/books/manage-jobs/page/sinfo
https://wiki.incd.pt/books/manage-jobs/page/seueue

e srun:submit a job for execution or initiate job steps in real time. The srun allows users to
requests consumable resources.


https://wiki.incd.pt/books/manage-jobs/page/srun

Jobs information

List all current jobs for a user:

squeue -u <username>

List all running jobs for a user:

squeue -u <username> -t RUNNING

List all pending jobs for a user:

squeue -u <username> -t PENDING

List all current jobs in the shared partition for a user:

squeue -u <username> -p shared

List detailed information for a job (useful for
troubleshooting):

scontrol show jobid -dd <jobid>

List status info for a currently running job:

sstat --format=AveCPU,AvePages,AveRSS,AveVMSize,JobID -j <jobid> --allsteps

Additional information for complet jobs (not available
during the run):

sacct -j <jobid> --format=JobID,JobName,MaxRSS,Elapsed

To view information for all jobs of a user:

sacct -u <username> --format=JoblID,JobName,MaxRSS,Elapsed



My first slurm job

Examples

Submit a simple MPI job

e On this example we run a small MPI application doing the following steps:
o Create a submission file
o Submit the job to the default partition
o Execute a simple MPI code
o Check the status of the job
o Read the output
e Download source code

wget --no-check-certificate https://wiki.incd.pt/attachments/71 -O cpi.c

e Create a submission file

vi my _first_slurm_job.sh

o Edit the file

#!/bin/bash

#SBATCH --job-name=MyFirstSlurmjob
#SBATCH --time=0:10:0

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=16

# Be sure to request the correct partition to avoid the job to be held in the queue, furthermore
#[Jon CIRRUS-B (Minho) choose for example HPC_4 Days

#[Jon CIRRUS-A (Lisbon) choose for example hpc

#SBATCH --partition=hpc

# Used to guarantee that the environment does not have any other loaded module



module purge

# Load software modules. Please check session software for the details

module load gcc63/openmpi/4.0.3

# Prepare
src="cpi.c'

exe="./cpi.$SLURM_JOB_ID"

# Compile application
echo "=== Compiling ==="

mpicc -0 $exe $src

# Run application. Please note that the number of cores used by MPI are assigned in the SBATCH directives.
echo "=== Running ==="
if [ -e $exe ]; then

chmod u+x $exe

mpiexec -np $SLURM_NTASKS $exe

rm -f $exe

fi

echo "Finished with job $SLURM_JOBID"

e Submit the job

sbatch my first_slurm_job.sh

e Check status of the job

$ squeue

JOBID PARTITION NAME USER ST TIME  NODES NODELIST(REASON)
1171 HPC_4_Days MyFirstS username PD 0:00 1 wn075

e Check further details about your job (very long output)

scontrol show job 1171

e Read the output of the job:

If name is not specified slurm will create by default a file with the output of your run



slurm-{job_id}.out
e.g. slurm-1171.out

e Cancel your job

$ scancel 1171

MPI examples:

Hellow World:

#include <mpi.h>

#include <stdio.h>

int main(int argc, char** argv) {
// Initialize the MPI environment

MPI_Init(NULL, NULL);

/I Get the number of processes
int world_size;

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

/l Get the rank of the process
int world_rank;

MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Get the name of the processor
char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;

MPI_Get_processor_name(processor_name, &name_len);

// Print off a hello world message
printf("Hello world from processor %s, rank %d out of %d processors\n",

processor_name, world_rank, world_size);

// Finalize the MPI environment.
MPI_Finalize();
}



Pl calculation

[* -*- Mode: C; c-basic-offset:4 ; -*- */

/*

* (C) 2001 by Argonne National Laboratory.
* See COPYRIGHT in top-level directory.
*/

#include "mpi.h"
#include <stdio.h>

#include <math.h>

int main(int argc,char *argv[])
{
longint n,i;
int  myid, numprocs;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x;
double startwtime = 0.0, endwtime;
int  namelen;

char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

MPI_Get_processor_name(processor_name,&namelen);

n = 100000000000;[Ty* default # of rectangles */
if (myid == 0) {
[startwtime = MPI_Wtime();

0

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

h = 1.0/ (double) n;

sum = 0.0;

/* A slightly better approach starts from large i and works back */
for (i = myid + 1; i <= n; i += numprocs)

{



X = h * ((double)i - 0.5);
Osum += 4.0/ (1.0 + x*x);
}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MP|_COMM_WORLD);

if (myid == 0) {

Jendwtime = MPI_Wtime();

Oprintf("pi=%.16f, error=%.16f, ncores %d, wall clock time = %f\n", pi, fabs(pi - PI25DT), numprocs, endwtime-
startwtime);

[fflush(stdout);

}

MPI_Finalize();

return 0O;



overview of the resources
offered

sinfo : overview of the resources offered
by the cluster

By default, sinfo lists the available partitions name(s), availability, time limit, number of nodes,
their state and the nodelist. A partition is a set of compute nodes.

The command sinfo by default
$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

all* up infinite 5 down* wn[075,096,105,110,146]

all* up infinite 6 drain wn[077,091,101,117,143,148]

all* up infinite 2  mix wn[079,097]

all* up infinite 33 alloc wn[081-089,092-095,099-100,104,108,112,115,118,124,135-139,144-
145,151,155-158]

all* up infinite 40 idle wn[071-073,076,080,090,098,102-103,106-107,109,111,113-114,116,120-
123,125-128,130-134,140-142,147,149-150,152-154,159-160]

all* up infinite 4 down wn[074,078,119,129]

debug up infinite 8 idle wn[060-063,065-067,069]

debug up infinite 3 down wn[064,068,070]

The command sinfo --Node provides the list of nodes and their actual state individually.
$ sinfo -Node

NODELIST NODES PARTITION STATE
wnO071 1 all* alloc
wn072 1 all* drain

wn073 1 all* alloc



wn074 1 all* down
wn075 1 all* down*

wn076 1 all* alloc

The command sinfo --summarize provides the node state in the form "available/idle/other/total"

$ sinfo --summarize

PARTITION AVAIL TIMELIMIT NODES(A/I/O/T) NODELIST
all* up infinite 36/7/47/90 wn[071-160]
debug up infinite 2/6/3/11 wn[060-070]

The command sinfo --long provides additional information than sinfo . Informations about the
OverSubscribe (OVERSUBS), All the queues are defined as OVERSUBS=NO, none of the
partitions(queues) allow requestes over the limit of the consumable resources.

$ sinfo --long

PARTITION AVAIL TIMELIMIT JOB_SIZE ROOT OVERSUBS GROUPS NODES STATE NODELIST

all* up infinite 1-infinite no NO all 5 down* wn[075,096,105,110,146]

all* up infinite 1-infinite no NO all 38 drained wn[072-073,076-077,080,090-091,098,101-
103,106-107,109,113-114,116-117,120-123,125-128,130,133-134,136,140-141,143,147-148,150,152,159]
all* up infinite 1-infinite no NO all 4 mixed wn[079,094,097,137]

all* up infinite 1-infinite no NO all 32 allocated wn[071,081-089,092-093,095,099-
100,104,108,112,115,118,124,131-132,135,138-139,144,151,155-158]

all* up infinite 1-infinite no NO all 7 idle wn[111,142,145,149,153-154,160]

With sinfo you can also filter the nodes/partitions for specific situation, in this example we
requested to list the nodes either idle or down

$sinfo --states=idle,down

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

all* up infinite 5 down* wn[075,096,105,110,146]

all* up infinite 8 idlewn[113,116,121-122,126,140-141,143]
all* up infinite 4 down wn[074,078,119,129]



debug up infinite 7 idle wn[060-063,065-067]
debug up infinite 3 down wn[064,068,070]

44 For more detailed information, please see manual man sinfo

states:.

e mix : consumable resources partially allocated

e idle : available to requests consumable resources

e drain : unavailable for use per system administrator request

e drng : currently executing a job, but will not be allocated to additional jobs. The node will
be changed to state DRAINED when the last job on it completes

e alloc : consumable resources fully allocated

e down : unavailable for use. Slurm can automatically place nodes in this state if some
failure occurs.



show job accounting data

sacct: displays accounting data for all jobs and job steps in the Slurm job accounting log or Slurm
database

If you use the command without any paremeters it will show you the currently running jobs
accounting data.

$ sacct
JobID JobName Partition Account AllocCPUS State ExitCode

1127 omp-bkp-o+ debug incd 16 RUNNING 0:0
1128 omp-bkp-o+ debug incd 16 RUNNING 0:0
1128.0 a.out incd 16 RUNNING 0:0

1129 omp-bkp-o+ debug incd 16 RUNNING 0:0
1129.0 a.out incd 16 RUNNING 0:0

1130 omp-bkp-o+ debug incd 16 RUNNING 0:0
1156 run_zacar+ HPC_4_Days root 1 RUNNING 0:0

You can specify the job which data you would like to view by using the -j flag.

$ sacct -j 1156

JoblID JobName Partition Account AllocCPUS State ExitCode

1156 run_zacar+ HPC_4 Days root 1 RUNNING 0:0

You can list jobs by user, by adding the -u flag and choosing the user.

$ sacct -u jprmachado

JobID JobName Partition Account AllocCPUS State ExitCode
1127 omp-bkp-o+ debug incd 16 RUNNING 0:0
1128 omp-bkp-o+ debug incd 16 RUNNING 0:0
1128.0 a.out incd 16 RUNNING 0:0



1129 omp-bkp-o+ debug incd 16 RUNNING 0:0
1129.0 a.out incd 16 RUNNING 0:0
1130 omp-bkp-o+ debug incd 16 RUNNING 0:0

You can also filter or create your own custom reports by using the --format flag and choosing what
data to show.

$ sacct --

format=User,JobID,Jobname,partition,state,time,start,end,elapsed,MaxRss,MaxVMSize,nnodes,ncpus,nodelist

User JobID JobName Partition State Timelimit Start End Elapsed MaxRSS
MaxVMSize NNodes NCPUS NodelList

jprmacha+ 1127 omp-bkp-0+ debug RUNNING 20-20:00:4+ 2019-11-20T11:44:28 Unknown 9-
04:00:00 1 16 wn018
jprmacha+ 1128 omp-bkp-0+ debug RUNNING 20-20:00:4+ 2019-11-20T11:46:43 Unknown 9-
03:57:45 1 16 wn019

1128.0 a.out RUNNING 2019-11-20T11:46:43 Unknown 9-
03:57:45 1 16 wn019
jprmacha+ 1129 omp-bkp-o+ debug RUNNING 20-20:00:+ 2019-11-20T11:51:30 Unknown 9-
03:52:58 1 16 wn020

1129.0 a.out RUNNING 2019-11-20T11:51:31 Unknown 9-
03:52:57 1 16 wn020
jprmacha+ 1130 omp-bkp-o+ debug RUNNING 20-20:00:4+ 2019-11-20T11:52:37 Unknown 9-
03:51:51 1 16 wn012

root 1156 run_zacar+ HPC 4 Days RUNNING 8-00:00:00 2019-11-27T13:40:02 Unknown 2-

02:04:26 1 1 wn035

There is also the possibility to filter you custom report by user and date, you just have to add the -
u and --start flags.

$ sacct --
format=User,JoblID,Jobname,partition,state,time,start,end,elapsed,MaxRss,MaxVMSize,nnodes,ncpus,nodelist -u

zbenta --start 2019-11-28

User JobID JobName Partition State Timelimit Start End Elapsed MaxRSS
MaxVMSize NNodes NCPUS NodelList




zbenta 1163 clover32 stage2 TIMEOUT 04:00:002019-11-28T13:22:31 2019-11-28T17:22:46

04:00:15 8 128 wn[022-029]

1163.batch batch CANCELLED 2019-11-28T13:22:31 2019-11-28T17:22:47
04:00:16 40152K 186176K 1 16 wn022

1163.0 orted FAILED 2019-11-28T13:22:35 2019-11-28T17:22:46 04:00:11
38104K 254748K 7 7 wn[023-029]

You can also use the flags to give you a report during a specific time interval, just use the --start
and --end flags.

$ sacct --
format=User,JobID,Jobname,partition,state,time,start,end,elapsed,MaxRss,MaxVMSize,nnodes,ncpus,nodelist -u

zbenta --start 2019-10-07 --end 2019-10-11

User JobID JobName Partition State Timelimit Start End Elapsed MaxRSS
MaxVMSize NNodes NCPUS NodelList

zbenta 15 Run_PRISM debug  FAILED 365-00:00+ 2019-10-07T11:05:58 2019-10-07T11:06:09
00:00:11 2 32 wn[018-019]
15.batch batch FAILED 2019-10-07T11:05:58 2019-10-07T11:06:09
00:00:11 1 16 wn018
15.0 orted COMPLETED 2019-10-07T11:06:02 2019-10-07T11:06:07
00:00:05 1 1 wn019
zbenta 20 Run_PRISM debug CANCELLED+ UNLIMITED 2019-10-08T11:42:01 2019-10-
08T12:12:03 00:30:02 2 32 wn[018-019]
20.batch batch CANCELLED 2019-10-08T11:42:01 2019-10-08T12:12:05 00:30:04
2626556K 186140K 1 16 wn018
20.0 orted FAILED 2019-10-08T11:42:05 2019-10-08T12:12:08 00:30:03
2594880K 292116K 1 1 wn019
zbenta 28 Run_PRISM debug FAILED UNLIMITED 2019-10-11T14:33:06 2019-10-11T14:33:06
00:00:00 2 32 wn[003,015]
28.batch batch FAILED 2019-10-11T14:33:06 2019-10-11T14:33:06
00:00:00 1 16 wn003

44 ¥*For more detailed information, please see the manual man sacct **



stop or cancel jobs

scancel : used to signal jobs or job
steps that are under the control of
Slurm

The command scancel is used to signal or cancel jobs, job arrays or job steps . A job or job step
can only be signaled by the owner of that job or user root. If an attempt is made by an
unauthorized user to signal a job or job step, an error message will be printed and the job will not
be signaled.

$ scancel <jobid>

JOBID PARTITION NAME  USER ST TIME NODES NODELIST(REASON)
33416 all Hexadeca fcruz R 3:26:11 2 wn[131-132]

33434 debug OFBuild Imendes R 1:50:42 1 wn069

33437 all FE ngalamba R 58:07 1 wn094

29:43 1 wn097

29:13 1 wnl37

13:43 1wnl26

33439 all FE ngalamba
33440 all FE ngalamba
33441 all FE ngalamba

1:41 1 wn071

R
R
R

33442 all FE ngalamba R 1:58 1 wn071
33443 all FE ngalamba R
R

33445 all FE ngalamba 0:12 1 wn079

You can all your jobs (running and pending)

$ scancel --user <username>

You may also only cancel all your jobs in a specific element, i.e. state, partition...



$ scancel --state PENDING --user <username>

$ Job can be also canceled using the job name

$ scancel --name <jobname>

44 For more detailed information, please see man scancel



Show jobs information in
gqueue

squeue: view information about jobs located in the Slurm scheduling queue.

gqueue: squeue alias formated to show specific jobs information

general usage

If you use the command without any paremeters it will show you the currently running jobs in the
gueue.

$ squeue

JOBID PARTITION NAME  USER ST TIME NODES NODELIST(REASON)
1127 debug omp-bkp- jprmacha R 9-04:38:00 1 wn018

1128 debug omp-bkp- jprmacha R 9-04:35:45 1 wn019

1129 debug omp-bkp- jprmacha R 9-04:30:58 1 wn020

1130 debug omp-bkp- jprmacha R 9-04:29:51 1 wn012
1156 HPC_4 Day run_zaca root R 2-02:42:26 1 wn035

view jobs from a specific user

You can filter by user, using the --user flag
$ squeue --user root

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1156 HPC_4 Day run_zaca root R 2-02:44:28 1 wn035

view particular jobs

You can slso filter by job id, using the -j flag.
$ squeue -j 1127

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)



1127 debug omp-bkp- jprmacha R 9-04:41:26 1 wn018

it is possible to provide multiple job id's separated by comma.

format the command output

The user may provide the output fields with format option "-O", for example showing the number of
requested cpus:

$ squeue -0 "%.7i %.9P %.8j %.8u %.2t %.10M %.6D %C %N" -u jmartins
JOBID PARTITION NAME  USER ST TIME NODES CPUS NODELIST
192427 debug cpi.sh jmartins R 0:06 1 64 hpc047

gqueue alias

The user interfaces have an alias for the squeue comand called gqueue with some useful fields

$ gqueue
JOBID PARTITION NAME USER STTIME NODES CPUS TRES PER_NODE NODELIST

184472 gpu gpu-job gpuuser R 18:34:541 1 gpu hpc058

44 **For more detailed information, please see the manual man squeue **



How to run parallel job's with
srun

srun : Used to submit/initiate job or job
step

Typically, srun is invoked from a SLURM job script but alternatively, srun can be run directly from
the command, in which case srun will first create a resource allocation for running the parallel job
(the salloc is implicit)

srun -N 1 -c 16 -p HPC_4_Days --time=1:00:00 --pty /bin/bash

This command will request 16 cores ( -c ) of one Node ( -N ) for 1h00 in the partition ( -p )
HPC 4 Days. Please note that this is subject to Nodes availability, if no Nodes are available your
request will be put in the queue waiting for resources.

The srun may also be executed inside a shell script.
#!/bin/bash

#SBATCH -N 3
#SBATCH -p HPC_4 Days

echo Starting job $SLURM_JOB_ID
echo SLURM assigned me these nodes

srun -l hostname

This batch job will result in the following output:

Starting job 51057
SLURM assigned me these nodes
0: wn054.b.incd.pt
1: wn055.b.incd.pt
2: wn057.b.incd.pt



The 3 allocated nodes are released after the srun finish.

By default srun will use the pmi2 , but you may consult the full list of the available mpi types.
$ srun --mpi=list
srun: MPI types are...
srun: pmi2

srun: openmpi

srun: none

To use a different mpi type e.g. srun --mpi=openmpi

44 For more detailed information, please see man srun



Preparing the Environment

There are lots of litte tweaks we need in order to prepate the environment for running specific
software. We will try to describe the ones we use more regularly so it is easier for the users to work
with them.

Version 2.3.3 compiled wiht Intel 2020
module load intel/mvapich2/2.3.3

source $I_MPI_ROOT/intel64/bin/mpivars.sh intel64 -ofi_internal=0
export LD_PRELOAD="libmpi.so"

Version 3.2.2 compiled with Intel 2020

module load intel/mpich/3.3.2
export LD_PRELOAD="libmpi.so"

OpenMPI 4.0.3

Version 4.0.3 compiled with Intel 2019

module load intel/openmpi/4.0.3

export |_MPI_PMI_LIBRARY=/lib64/libpmi.so

openfoam

Version 1912 compiled wiht Intel 2020



module load intel/openfoami20/1912
source /cvmfs/sw.el7/ar/ix_es2680/i20/openfoami20/1912/build01/OpenFOAM-v1912/etc/bashrc
. [cvmfs/sw.el7/ar/ix_es2680/i20/openfoami20/1912/build01/OpenFOAM-v1912/bin/tools/RunFunctions

Version 1906 compiled wiht Intel 2020

module load intel/openfoami20/1906
source /cvmfs/sw.el7/ar/ix_es2680/i20/openfoami20/1906/build01/OpenFOAM-v1912/etc/bashrc
. /lcvmfs/sw.el7/ar/ix_es2680/i20/openfoami20/1906/build01/OpenFOAM-v1912/bin/tools/RunFunctions

gromacs

intel/gromacs/2020.2

module load gcc-6.3
source /cvmfs/sw.el7/ar/ix_es2680/i20/gromacs/2020.2/build01/bin/GMXRC.bash
source /cvmfs/sw.el7/intel/2020/bin/compilervars.sh intel64

module load intel/gromacs/2020.2

intel/gromacs/2020.20-i20

module load gcc-7.5

source /cvmfs/sw.el7/ar/ix_es2680/i20/gromacs/2020.2/build02/bin/GMXRC.bash#source
/cvmfs/sw.el7/intel/2020/bin/compilervars.sh intel64

source /cvmfs/sw.el7/intel/2020/bin/compilervars.sh intel64

module load intel/gromacs/2020.2

gromacs-4.6.7

module load gromacs-4.6.7

module load gcc63/openmpi/4.0.3

export GMX_MAXBACKUP=-1

mpirun -np 10 mdrun -s benchMEM.tpr -nsteps 500000 -maxh 3.0 -resethway

Version 2020.2 compiled wiht Intel 2020

module load gcc-6.3
source /cvmfs/sw.el7/ar/ix_es2680/i20/gromacs/2020.2/build02/bin/GMXRC.bash

source /cvmfs/sw.el7/intel/2020/bin/compilervars.sh intel64



module load intel/gromacs/2020.2



Interactive Sessions

Slurm allow interactive sessions into the workernodes, using ssh, but within a valid job allocation,
normal ssh are disabled. The interactive session can be created on the scope of normal partitions
but those jobs will have the same priority as a regular job.

There is a limitation of 1 job and 1 task per node on partitions hpc and gpu, we would like to
encourage users to close sessions as soon as possible to give all a good chance to use the
resources.

44 The FCT grant users should use the partition fct instead in the examples bellow.

Starting srun Session

The most simple way to start an interactive session is:

[user@cirrusO01 ~]1$ srun -p hpc --job-name "my_interactive" --pty bash -i
srun: job 72791 queued and waiting for resources
srun: job 72791 has been allocated resources

[user@hpc059 ~]$

You will have an ssh session on a worker node were other users are running jobs or interactive
sessions as well, try not bother them with unsolicitated interactions, and exit the session when you
are finished.

44 The FCT call users should target the partition fct and the QOS associate to the
user, e.qg. "srun -p fct -q cpcaXXXX2020 ...", where XXXX is the call ID.

The srun command have the same restrictions as a normal job and will be aborted or refused to
run when the system limits are axceeded. If you run the squeue you will see your interactive job
listed as any other job:

[user@hpc059 ~]$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)



72818 hpc my_inter user R 2:03 1 hpc059

Starting salloc Session

The salloc is setup to behave like the srun command, for example:

[user@cirrus01 ~1$ salloc -p hpc --job-name "my_interactive"
salloc: Pending job allocation 72818

salloc: job 72818 queued and waiting for resources

salloc: job 72818 has been allocated resources

salloc: Granted job allocation 72818

salloc: Waiting for resource configuration

salloc: Nodes hpc059 are ready for job

[user@hpc059 ~1%

44 Once again the FCT call users should target the partition fct and the QOS
associate to the user



Job pipeline using slurm
dependencies

Some times we need to launch a list of jobs that execute in sequence, one after another. In those
cases we will use the --depency sbatch option, check the manual page for more details, we will
only present a simple example.

Simple example

Suppose we need to submit the script my_first_job.sh and then mu_second_job.sh that should
run after the first one:

[user@cirrus01 ~1$ sbatch my_first_job.sh
Submitted batch job 1843928

[user@cirrus01 ~1$ sbatch --dependency=after:1843928 my_second_job.sh
Submitted batch job 1843921

[user@cirrus01 ~]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
1843928 hpc my first job.sh user R0:11 1 hpc046

1843921 hpc my_second_job.sh user PD 0:00 1 hpc047

In this case the second job will run even if the first job fails for some reason. The pending job will
execute when the first finish his execution.

Tipical example

On a real case we may need the ensure that a good termination of the first job, for example, the
first job may produce some output file needed as input for the second job:

[user@cirrus01 ~1$ sbatch my first_job.sh
Submitted batch job 1843922



[user@cirrus01 ~]1$ sbatch --dependency=afterok:1843922 my_second_job.sh
Submitted batch job 1843923

The afterok parameter states that the second job would start only if the previous job terminate
with no errors.

Complex cases

Check the sbatch manual page for more details:

[user@cirrus01 ~]$ man sbatch

search for the -d, --dependency=<dependency_list> options explanation.



Use of user QOS for CPU jobs

In order to use QOS you will to have an assigned user QOS. In the following example the user will
submit a job to the fct partition using an specific created cpca097822021.

#!/bin/bash

#SBATCH --job-name=prod01
#SBATCH --time=0:10:0
#SBATCH --partition=fct
#SBATCH --qos=cpca097822021
#SBATCH --output=%x.0%)]
#SBATCH --error=%x.0%j
#SBATCH --nodes=1

#SBATCH --ntasks-per-node=16

### Prepare the environment
module purge

module load gcc83/openmpi/4.1.1 cuda-11.2

echo hostname

Not all queues allow QOS please follow guidance provided by INCD team when assigning
the QOS.



