
Using SSH tunnels
In some cases you may need to access remote hosts that have private IP addresses or are
protected behind a firewall. These hosts might be only accessible through an intermediate login
host. The SSH tunnels (SSH port forwarding) facilitate access to multiple hosts protected behind a
single public host exposed to the Internet. Once the tunnels are established the hosts behind the
firewall can be directly accessed from your machine. Examples where tunnels can be beneficial:

When using the INCD cloud service you may have multiple VMs with private IP addresses
acessible through a single front-end VM having a single public IP address. This enables
you to access remote VMs with private addresses and save scarse IPv4 address space.
Some INCD services are not directly exposed to the Internet and may require passing
through an intermediate login host for added security.

In the following examples the hostnames public.ncg.ingrid.pt and internal.ncg.ingrid.pt as well as
the port numbers are placeholders that should be replaced by actual real hostnames and port
numbers according to your scenario.

jump over SSH hosts easily
from the command line

If you just need to connect via SSH by jumping over a reachable host you can use the
jump host functionality of SSH whose syntax is described below and where:

internal-remote-host is the host or IP address behind the firewall that you want to
reach via SSH.
public-remote-host the remote host or IP address of the intermediate host that is
exposed to the Internet through which you will connect to the internal-remote-
host.
The username is optional and can be different for the public and internal host.

Basic jump host syntax:

Example of using the SSH jump host functionality to access the SSH port (port number 22) of the
remote host internal.ncg.ingrid.pt through a publicly reachable host public.ncg.ingrid.pt. Most of
the examples in this page are valid both for ssh and its related commands such as scp and sftp.

ssh -J username@public-remote-host username@internal-remote-host

forwarding of X11 windows
SSH enables the forwarding of X windows.
This requires that your local machine has an X11 display server. If you are on Windows
you can use MobaXterm that works both as ssh client and X server.
For more information on this topic see here

port forwarding from local to
remote in detail

Port forwarding enables multiple tunnels over a single SSH connection thus exposing
multiple remote hosts and ports to be directly accessed by SSH-related and SSH-unrelated
applications (such as forwarding HTTP/HTTPS ports over SSH).
The port forwarding is usually defined upon the connection to the intermediate host that is
directly acessible. An SSH session to the intermediate host can simultaneously define one
or more port forwardings using the -L option.
The basic syntax for SSH port forwarding is described below where:

local-port is a TCP port of your local machine (your desktop, laptop, etc). Just pick
one port that is not being used. This port should be above the privileged port range
(above 1024) and preferrably outside of the IP ephemeral port range to avoid
collisions with dynamically allocated ports (for many Linux systems select a port
outside of the range 32768-60999).
internal-remote-host is an IP address or hostname of a remote host behind the
firewall.
internal-remote-port is the TCP port of the internal-remote-host that you want to
access.
public-remote-host the remote host or IP address of the intermediate host that is
exposed to the Internet.

Basic port forwarding syntax:

ssh -J public.ncg.ingrid.pt username@internal.ncg.ingrid.pt
scp -J public.ncg.ingrid.pt mylocalfile username@internal.ncg.ingrid.pt:
sftp -J public.ncg.ingrid.pt username@internal.ncg.ingrid.pt

ssh -J username@public.ncg.ingrid.pt username@internal.ncg.ingrid.pt

https://mobaxterm.mobatek.net/
https://wiki.incd.pt/books/how-to-access/page/configuring-ssh

Example of establishing a tunnel to access the SSH port (port number 22) of the remote host
internal.ncg.ingrid.pt through a publicly reachable host public.ncg.ingrid.pt. We pick a random
local-port (e.g. 31732) that is then mapped to the port 22 of internal.ncg.ingrid.pt.

Once the SSH connection to public.ncg.ingrid.pt is established the host internal.ncg.ingrid.pt can be
directly accessed from your local host by connecting to the local-port on the loopback address. Just
create a second command line terminal and try:

Once the SSH connection to the intermediate host is closed the tunnels will stop working. Therefore
the initial SSH connection must be kept alive while needed and the connections to the remote
internals hosts must be performed from a separate local terminal window.

Another example where both port 22 (SSH) and port 80 (HTTP) are both mapped to local ports.
With this both ports are forwarded over a single SSH connection. The access to the web server
from the local host can be tested using curl.

port forwarding from remote
to local in detail

This enables a remote host behind the firewall to access services in your local network.
Basically this enables port forwarding in the reverse direction, from the remote network to
the local network.
This can be potentially dangerous for you as it enables users in the remote machine or
remote network to access your local machines.
The basic syntax for port forwarding from the remote side to the local side is described
below where:

ssh -L local-port:internal-remote-host:internal-remote-port public-remote-host

ssh -L 31732:internal.ncg.ingrid.pt:22 public.ncg.ingrid.pt

ssh -p 31732 username@127.0.0.1
scp -P 31732 mylocalfile username@127.0.0.1:
sftp -P 31732 127.0.0.1

ssh -L 31732:internal.ncg.ingrid.pt:22 -L 8080:internal.ncg.ingrid.pt:80 public.ncg.ingrid.pt

curl http://127.0.0.1:8080

remote-port-on-public-host is a port number from the public-remote-host Just
pick one port that is not being used above the privileged port range (above 1024)
and preferrably outside of the IP ephemeral port range to avoid collisions with
dynamically allocated ports (for many Linux systems outside the range of 32768-
60999).
local-host a host in the local network of the user to be accessed from the public-
remote-host.
local-port the port number of the localhost to be accessed from the public-remote-
host.
public-remote-host the remote host or IP address of the intermediate host that is
exposed to the Internet.

Basic remote port forwarding syntax:

Example of forwarding the remote-port number 65532 on public.ncg.ingrid.pt to the port 22 of the
local host named myotherlocalhost.

Then from public.ncg.ingrid.pt you can access myotherlocalhost in your local network with:

jump host via config file
Configuring SSH via jump host in your $HOME/.ssh/config enables the configuration to be
stored. The configuration syntax is below where:

Host is a name choosen by you to identify this mapping, this name may be different
from the hostname and will be recognized as a hostname only by SSH.
Hostname the real hostname of the internal host that you want to access behind
the firewall.
User the username for the internal host identified by Hostname.
ProxyJump the remote host or IP address of the intermediate host that is exposed
to the Internet.

The basic configuration for remote access via a jump host

ssh -R remote-port-on-public-host:local-host:local-port public-remote-host

ssh -R 65532:myotherlocalhost:22 public.ncg.ingrid.pt

ssh -p 65532 127.0.0.1

Host name-for-the-internal-remote-host
Hostname actual-internal-remote-host
User username-in-actual-internal-remote-host

Example of configuration:

Accessing the configured host:

port forwarding via config
file

Configuring port forwarding in your $HOME/.ssh/config requires configuring two hosts. The
first will be the intermediate host accessible through the Internet and the second the
internal host. The fields are as follows:

public-remote-host the remote host or IP address of the intermediate host that is
exposed to the Internet.
LocalForward the mapping of a local-port to a remote internal hostname or IP
address and port number that are behind the firewall.
name-for-the-internal-remote-host is a name choosen by you to identify this
mapping, this name may be different from the actual hostname and will be
recognized as a hostname only by SSH.
local-port must be the same across the two host definitions and is a local TCP port
number that will be mapped to the internal-remote-host and internal-remote-port.

The basic configuration for port forwarding:

ProxyJump username@public-remote-host
HostKeyAlias name-for-the-internal-remote-host

Host ncg-internal
Hostname internal.ncg.ingrid.pt
User username-for-internal
ProxyJump username@public.ncg.ingrid.pt
HostKeyAlias ncg-internal

ssh ncg-internal

Host public-remote-host
LogLevel FATAL
LocalForward local-port internal-remote-host:internal-remote-port

Host name-for-the-internal-remote-host

Example of port forwarding for both SSH (port 22) and HTTP (port 80):

Accessing the configured host

(*) notice that you cannot use the hostname ncg-internal with curl as this is a hostname that is only
recognized by SSH related applications (ssh, scp, sftp).

using socks proxies
SSH supports socks4 and socks5 proxying. This allows socks enabled applications to
access hosts behind the firewall. This is only valid for socks enabled applications e.g.
firefox.
The syntax is below where:

public-remote-host the remote host or IP address of the intermediate host that is
exposed to the Internet
local-port as in the other cases is a TCP port of your local machine (your desktop,
laptop, etc). Just pick one port that is not being used. This port should be above the
privileged port range (above 1024) and preferrably outside of the IP ephemeral port
range to avoid collisions with dynamically allocated ports (for many Linux systems
select a port outside of the range 32768-60999).

The basic command line usage to establish a socks server via SSH:

Hostname 127.0.0.1
User username
Port local-port
HostKeyAlias name-for-the-internal-remote-host

Host public.ncg.ingrid.pt
LogLevel FATAL
LocalForward 31732 internal.ncg.ingrid.pt:22
LocalForward 8080 internal.ncg.ingrid.pt:80

Host ncg-internal
Hostname 127.0.0.1
User username
Port 31732
HostKeyAlias ncg-internal

ssh ncg-internal
curl http://127.0.0.1:8080

The basic $HOME/.ssh/config setup to establish a socks server:

Example of socks proxy use with Firefox:

Then in firefox:

1. Goto Preferences->Network Settings:
2. Select Manual proxy configuration
3. Enter in SOCKS Host: 127.0.0.1
4. Enter in Port: 31733
5. If needed add local networks to be excluded from the proxy using No proxy for
6. If needed add the options related to DNS proxying

(*) notice that all your http request will now be forwarded through the socks proxy, to restore the
previous settings choose No proxy in the Preferences->Network Settings.

(*) as in the other examples the TCP port number to be allocated might need to be adjusted to
match a free port number in your local machine (desktop, laptop, etc).

using sshuttle
The tool sshuttle is available in many Linux distributions. It uses SSH in combination with iptables
and other functionalities to easily establish tunnels with better performance and a behavior more
similar to a VPN. Instead of establishing a direct end-to-end TCP connection to the remote internal
hosts, sshutle intercepts local packets, sends their payload over SSH and establishes connections
from the remote public host to the internal hosts. This prevents some of the performance issues
associated with TCP end-to-end connections through SSH inner tunnels and also enables other
capabilities such as accessing more transparently hosts and services behind the firewall.

Requirements:

Python 2.3 or higher on the remote server side.
sshuttle requires root privileges in your local machine (desktop, laptop, etc), root
privileges in the remote machine are not required.

ssh -D local-port username@public-remote-host

Host public-remote-host
DynamicForward local-port
User username

ssh -D 31733 username@public.ncg.ingrid.pt

sshuttle must be installed in the local client side, sshuttle is not required on the remote
host.
Create an sshutle configuration file for instance in $HOME/.ssh/sshutle-ncg.conf with the
following content:

remote networks plus prefixes one per line (e.g. 192.168.1.0/24)
--auto-nets optional to add networks know by the remote host side.
--dns optionally enables the capture of dns requests and forwards them to the
remote side, use carefully as it may disrupt your local DNS queries. Also if you have
multiple sshuttle instances you can only have one of them capturing and forwarding
the DNS queries.
--auto-hosts to enable discovery of hosts in the remote side
--seed-hosts followed by a line containing remote hostnames separated by
commas that you want to use
--remote followed by a line with the hostname of the public remote host to act as
intermediate host

Template for the sshutle configuration file:

Example that needs to be adjusted to your actual needs:

Invoking sshutle from the command line:

Then you can ssh into the hosts directly:

ip-network-A/ip-prefix-A
ip-network-B/ip-prefix-B
ip-network-X/ip-prefix-X
--auto-nets
--auto-hosts
--seed-hosts
internal-remote-host-01,internal-remote-host-02, ...
--remote
username@public-remote-host

192.168.1.0/24
192.168.2.0/24
--auto-hosts
--seed-hosts
internal.ncg.ingrid.pt, otherinternal.ncg.ingrid.pt, anotherinternal.ncg.ingrid.pt
--remote
username@public.ncg.ingrid.pt

sshuttle @$HOME/.ssh/sshutle-ncg.conf

If the remote internal host has other services running such as a web server they will be also
accessible:

ssh internal.ncg.ingrid.pt

curl http://otherinternal.ncg.ingrid.pt

Revision #69
Created 11 January 2021 12:16:32 by Jorge Gomes
Updated 12 January 2021 14:11:20 by Jorge Gomes

