
Using ssh keys
Basic description on how to use ssh keys

Create a ssh key
Security
Configuring SSH
Using SSH tunnels
Enable access to a remote host

Create a ssh key
Access to the INCD computing clusters is performed via SSH and requires the use of SSH keys for
authentication. Authentication with passwords is not supported. Each SSH key pair has two
components a public key that must be added to the hosts to be remotely accessed, and a private
key that must remain in the user workstation or laptop machine. The private key must be
protected with a strong password. The users must generate their own SSH key pair in a machine
of their own (workstation, laptop, etc). To generate your SSH key pair follow these instructions.

Linux and macOS
Users must generate the SSH key pair in a computer of their own (desktop, notebook etc).
The passphrase is used to protect the private key, very IMPORTANT please choose a
strong password with uppercase and lowercase characters, numbers and symbols.

NOTE: xxx will be rsa, ed25519 or something similar. And you must check and replace it accordling
in the instructions below.

ssh-keygen will create a pair of keys, private (id_xxx) and public (id_xxx.pub), these files
are created in the user home directory usually under $HOME/.ssh
The file and directory protections of $HOME/.ssh should be as follows:

$ ssh-keygen -b 4096
Generating public/private xxx key pair.
Enter file in which to save the key (/home/username/.ssh/id_xxx):
Created directory '/home/username/.ssh'.
Enter passphrase (empty for no passphrase): ----> IMPORTANT: Choose a strong password
Enter same passphrase again: ----> IMPORTANT: Choose a strong password
Your identification has been saved in /home/username/.ssh/id_xxx
Your public key has been saved in /home/username/.ssh/id_xxx.pub

ls -la $HOME/.ssh/
total 8
drwx------ 3 username group 4096 Jan 11 18:12 .
-rw------- 1 username group 1743 Feb 19 10:52 id_xxx
-rw-r--r-- 1 username group 404 Feb 19 10:52 id_xxx.pub

https://wiki.incd.pt/books/how-to-access/page/security

Correct File permissions using chmod

Users must send to the INCD administrators only the public key id_xxx.pub (full content
of the file).
The private key must must be kept private and must NEVER be shared with other persons.

Microsoft Windows
For Windows users accessing the INCD public machines we recommend the use of
terminal emulators like MobaXterm.

MobaXterm works both as a terminal and X windows server, this allows to display in
your desktop the graphical X11 windows from the remote Linux host.
MobaXterm supports file transfer via the embbed SFTP browser.
MobaXterm documentation is available here
Key pairs can be generated with ssh-keygen -b 4096
You can also create and manage your SSH keys using the embedded MobaKeyGen
application (available from the "Tools" menu).

Windows users can also generate ssh-keys using Putty
Download and install Putty
Generate the key in your Windows machine see these examples:

Youtube
HowTo

IMPORTANT: notice that Putty is only a text terminal and does not work as X
windows graphics server and does not support file transfer.

Users must send to the INCD administrators only the public key id_rsa.pub
The private key must must be kept private and must NEVER be shared with other persons.

Login does not work

chmod 700 .ssh
chmod 644 id_xxx.pub
chmod 600 id_xxx

https://mobaxterm.mobatek.net/
https://mobaxterm.mobatek.net/documentation.html
http://www.putty.org/
https://www.youtube.com/watch?v=1wQ8wQfa7lw
https://www.howtoforge.com/ssh_key_based_logins_putty

If the INCD helpdesk confirms that your public key has been installed and still you cannot
login please check the following:
1. That you are trying to access the correct INCD login hostname as indicated by the

INCD helpdesk.
2. That you are trying to access the INCD host from the same machine and user

account where you generated the SSH key pair.
3. That the permissions and ownership of your SSH directory and contained files are

correct. The relevant Linux directory and files are below, see if they match the
protections described in the Linux section above:

$HOME/.ssh
$HOME/.ssh/id_rsa
$HOME/.ssh/id_rsa.pub

4. That the SSH private key password is correct. In Linux you can do this by trying to
load the private key into the SSH agent with the command: ssh-add

5. That the INCD login host is reachable from your machine. From Linux you can use
the command nmap -P0 -p22 hostname the returned port STATE for the SERVICE ssh
(PORT 22/TCP) must be "open". If the hostname does not resolve or the STATE is
different from "open" (e.g. filtered) you may have a network connectivity problem.

6. If you are on Windows consider to install a Linux virtual machine and perform the
SSH access from that Linux VM. Notice that in this case you need to place the
keypair (id_rsa and id_rsa.pub) in the Linux virtual machine or generate a new key
pair in Linux and send it to the INCD administrators. To install Linux on windows you
can use:

An hypervisor such as VirtualBox

The Windows Subsystem for Linux (WSL)
If you still can't login please contact the INCD helpdesk and provide details on the error
and verification steps that you already performed.

https://www.virtualbox.org/
https://docs.microsoft.com/en-us/windows/wsl/install-win10

Security
Choose strong passwords - at least 9 characters long, a mixture of alphanumeric mixed
case and symbol characters. The password should be completely different from the
password you use on any other system.
Never use the same password across different systems !
NEVER copy your SSH private key to systems that you do not control! The private
key should remain in your .ssh directory on the system you generated it and should be
readable only by you. If you need to login from two systems such as a laptop and a
workstation you can copy the key pair to both systems ONLY if you really trust both. When
copying always check that the copied files are only readable by yourself.
SSH key passphrases must be as secure as other passwords.
Never setup passphraseless ssh keys to allow unauthenticated login access between
systems !!!

WARNING: Incorrectly configuring SSH keys can leave your accounts vulnerable to attack and,
more importantly, can provide attackers with a trivial means to access remote systems with
potential legal consequences for yourself. It is your responsability to keep your SSH authentication
and your user account secure.

Configuring SSH
In order to simplify SSH access to remote hosts we recommend INCD users to adopt the
following recommendatios and configuration defaults.

Enabling SSH agents and X11
forwarding
Activate the forwarding of both SSH authentication credentials and X11 graphical windows. This will
facilitate your SSH access by enabling:

Logging in across hosts without having to enter passwords or other credentials (
ForwardAgent);
X11 applications to forward their GUI back to your workstation display using the SSH
connection (ForwardX11 and ForwardX11Trusted).

Notice that these are two independent features unrelated to each other, you can activate one or
both. If you do not require the forwarding of graphical X11 windows you can skip it. Similarly if you
do not plan to access other hosts behind the login host or if you do not trust the remote host you
should skip the forwarding of SSH credentials (ForwardAgent).

To activate both options the following configuration steps should be performed in the local
workstation (PC or laptop desktop) from which the remote INCD hosts will be accessed.

Edit the local SSH config file, either the system configuration file or the user specific
configuration file in your home directory.

or

$sudo vi /etc/ssh/ssh_config

$sudo vi $HOME/.ssh/config

Add the following options:

Host *
 ForwardAgent yes
 ForwardX11 yes

 ForwardX11Trusted yes

Disclaimer: In some operating systems the location of the SSH configuration file may
change please check your OS for details.

Alternatively the same SSH forwarding options can be activated from the command line for each
connection by invoking SSH with the corresponding flags -A -X and -Y:

More information about SSH and
port forwarding can be found in:

The INCD wiki page on SSH port forwarding available here

The SSH Forwarding guide

 ssh -A -X -Y remote-hostname

https://wiki.incd.pt/books/how-to-access/page/using-ssh-tunnels
http://unixwiz.net/techtips/ssh-agent-forwarding.html

Using SSH tunnels
In some cases you may need to access remote hosts that have private IP addresses or are
protected behind a firewall. These hosts might be only accessible through an intermediate login
host. The SSH tunnels (SSH port forwarding) facilitate access to multiple hosts protected behind a
single public host exposed to the Internet. Once the tunnels are established the hosts behind the
firewall can be directly accessed from your machine. Examples where tunnels can be beneficial:

When using the INCD cloud service you may have multiple VMs with private IP addresses
acessible through a single front-end VM having a single public IP address. This enables
you to access remote VMs with private addresses and save scarse IPv4 address space.
Some INCD services are not directly exposed to the Internet and may require passing
through an intermediate login host for added security.

In the following examples the hostnames public.a.acnca.pt and internal.a.acnca.pt as well as the
port numbers are placeholders that should be replaced by actual real hostnames and port numbers
according to your scenario.

jump over SSH hosts easily
from the command line

If you just need to connect via SSH by jumping over a reachable host you can use the
jump host functionality of SSH whose syntax is described below and where:

internal-remote-host is the host or IP address behind the firewall that you want to
reach via SSH.
public-remote-host the remote host or IP address of the intermediate host that is
exposed to the Internet through which you will connect to the internal-remote-
host.
The username is optional and can be different for the public and internal host.

Basic jump host syntax:

Example of using the SSH jump host functionality to access the SSH port (port number 22) of the
remote host internal.a.acnca.pt through a publicly reachable host public.a.acnca.pt. Most of the
examples in this page are valid both for ssh and its related commands such as scp and sftp.

ssh -J username@public-remote-host username@internal-remote-host

forwarding of X11 windows
SSH enables the forwarding of X windows.
This requires that your local machine has an X11 display server. If you are on Windows
you can use MobaXterm that works both as ssh client and X server.
For more information on this topic see here

port forwarding from local to
remote in detail

Port forwarding enables multiple tunnels over a single SSH connection thus exposing
multiple remote hosts and ports to be directly accessed by SSH-related and SSH-unrelated
applications (such as forwarding HTTP/HTTPS ports over SSH).
The port forwarding is usually defined upon the connection to the intermediate host that is
directly acessible. An SSH session to the intermediate host can simultaneously define one
or more port forwardings using the -L option.
The basic syntax for SSH port forwarding is described below where:

local-port is a TCP port of your local machine (your desktop, laptop, etc). Just pick
one port that is not being used. This port should be above the privileged port range
(above 1024) and preferrably outside of the IP ephemeral port range to avoid
collisions with dynamically allocated ports (for many Linux systems select a port
outside of the range 32768-60999).
internal-remote-host is an IP address or hostname of a remote host behind the
firewall.
internal-remote-port is the TCP port of the internal-remote-host that you want to
access.
public-remote-host the remote host or IP address of the intermediate host that is
exposed to the Internet.

Basic port forwarding syntax:

ssh -J public.a.acnca.pt username@internal.a.acnca.pt
scp -J public.a.acnca.pt mylocalfile username@internal.a.acnca.pt:
sftp -J public.a.acnca.pt username@internal.a.acnca.pt

ssh -J username@public.a.acnca.pt username@internal.a.acnca.pt

https://mobaxterm.mobatek.net/
https://wiki.incd.pt/books/how-to-access/page/configuring-ssh

Example of establishing a tunnel to access the SSH port (port number 22) of the remote host
internal.a.acnca.pt through a publicly reachable host public.a.acnca.pt. We pick a random local-
port (e.g. 31732) that is then mapped to the port 22 of internal.a.acnca.pt.

Once the SSH connection to public.a.acnca.pt is established the host internal.a.acnca.pt can be
directly accessed from your local host by connecting to the local-port on the loopback address. Just
create a second command line terminal and try:

Once the SSH connection to the intermediate host is closed the tunnels will stop working. Therefore
the initial SSH connection must be kept alive while needed and the connections to the remote
internals hosts must be performed from a separate local terminal window.

Another example where both port 22 (SSH) and port 80 (HTTP) are both mapped to local ports.
With this both ports are forwarded over a single SSH connection. The access to the web server
from the local host can be tested using curl.

port forwarding from remote
to local in detail

This enables a remote host behind the firewall to access services in your local network.
Basically this enables port forwarding in the reverse direction, from the remote network to
the local network.
This can be potentially dangerous for you as it enables users in the remote machine or
remote network to access your local machines.
The basic syntax for port forwarding from the remote side to the local side is described
below where:

ssh -L local-port:internal-remote-host:internal-remote-port public-remote-host

ssh -L 31732:internal.a.acnca.pt:22 public.a.acnca.pt

ssh -p 31732 username@127.0.0.1
scp -P 31732 mylocalfile username@127.0.0.1:
sftp -P 31732 127.0.0.1

ssh -L 31732:internal.a.acnca.pt:22 -L 8080:internal.a.acnca.pt:80 public.a.acnca.pt

curl http://127.0.0.1:8080

remote-port-on-public-host is a port number from the public-remote-host Just
pick one port that is not being used above the privileged port range (above 1024)
and preferrably outside of the IP ephemeral port range to avoid collisions with
dynamically allocated ports (for many Linux systems outside the range of 32768-
60999).
local-host a host in the local network of the user to be accessed from the public-
remote-host.
local-port the port number of the localhost to be accessed from the public-remote-
host.
public-remote-host the remote host or IP address of the intermediate host that is
exposed to the Internet.

Basic remote port forwarding syntax:

Example of forwarding the remote-port number 65532 on public.a.acnca.pt to the port 22 of the
local host named myotherlocalhost.

Then from public.a.acnca.pt you can access myotherlocalhost in your local network with:

jump host via config file
Configuring SSH via jump host in your $HOME/.ssh/config enables the configuration to be
stored. The configuration syntax is below where:

Host is a name choosen by you to identify this mapping, this name may be different
from the hostname and will be recognized as a hostname only by SSH.
Hostname the real hostname of the internal host that you want to access behind
the firewall.
User the username for the internal host identified by Hostname.
ProxyJump the remote host or IP address of the intermediate host that is exposed
to the Internet.

The basic configuration for remote access via a jump host

ssh -R remote-port-on-public-host:local-host:local-port public-remote-host

ssh -R 65532:myotherlocalhost:22 public.a.acnca.pt

ssh -p 65532 127.0.0.1

Host name-for-the-internal-remote-host
Hostname actual-internal-remote-host
User username-in-actual-internal-remote-host

Example of configuration:

Accessing the configured host:

port forwarding via config
file

Configuring port forwarding in your $HOME/.ssh/config requires configuring two hosts. The
first will be the intermediate host accessible through the Internet and the second the
internal host. The fields are as follows:

public-remote-host the remote host or IP address of the intermediate host that is
exposed to the Internet.
LocalForward the mapping of a local-port to a remote internal hostname or IP
address and port number that are behind the firewall.
name-for-the-internal-remote-host is a name choosen by you to identify this
mapping, this name may be different from the actual hostname and will be
recognized as a hostname only by SSH.
local-port must be the same across the two host definitions and is a local TCP port
number that will be mapped to the internal-remote-host and internal-remote-port.

The basic configuration for port forwarding:

ProxyJump username@public-remote-host
HostKeyAlias name-for-the-internal-remote-host

Host ncg-internal
Hostname internal.a.acnca.pt
User username-for-internal
ProxyJump username@public.a.acnca.pt
HostKeyAlias ncg-internal

ssh ncg-internal

Host public-remote-host
LogLevel FATAL
LocalForward local-port internal-remote-host:internal-remote-port

Host name-for-the-internal-remote-host

Example of port forwarding for both SSH (port 22) and HTTP (port 80):

Accessing the configured host

(*) notice that you cannot use the hostname ncg-internal with curl as this is a hostname that is only
recognized by SSH related applications (ssh, scp, sftp).

using socks proxies
SSH supports socks4 and socks5 proxying. This allows socks enabled applications to
access hosts behind the firewall. This is only valid for socks enabled applications e.g.
firefox.
The syntax is below where:

public-remote-host the remote host or IP address of the intermediate host that is
exposed to the Internet
local-port as in the other cases is a TCP port of your local machine (your desktop,
laptop, etc). Just pick one port that is not being used. This port should be above the
privileged port range (above 1024) and preferrably outside of the IP ephemeral port
range to avoid collisions with dynamically allocated ports (for many Linux systems
select a port outside of the range 32768-60999).

The basic command line usage to establish a socks server via SSH:

Hostname 127.0.0.1
User username
Port local-port
HostKeyAlias name-for-the-internal-remote-host

Host public.a.acnca.pt
LogLevel FATAL
LocalForward 31732 internal.a.acnca.pt:22
LocalForward 8080 internal.a.acnca.pt:80

Host ncg-internal
Hostname 127.0.0.1
User username
Port 31732
HostKeyAlias ncg-internal

ssh ncg-internal
curl http://127.0.0.1:8080

The basic $HOME/.ssh/config setup to establish a socks server:

Example of socks proxy use with Firefox:

Then in firefox:

1. Goto Preferences->Network Settings:
2. Select Manual proxy configuration
3. Enter in SOCKS Host: 127.0.0.1
4. Enter in Port: 31733
5. If needed add local networks to be excluded from the proxy using No proxy for
6. If needed add the options related to DNS proxying

(*) notice that all your http request will now be forwarded through the socks proxy, to restore the
previous settings choose No proxy in the Preferences->Network Settings.

(*) as in the other examples the TCP port number to be allocated might need to be adjusted to
match a free port number in your local machine (desktop, laptop, etc).

using sshuttle
The tool sshuttle is available in many Linux distributions. It uses SSH in combination with iptables
and other functionalities to easily establish tunnels with better performance and a behavior more
similar to a VPN. Instead of establishing a direct end-to-end TCP connection to the remote internal
hosts, sshutle intercepts local packets, sends their payload over SSH and establishes connections
from the remote public host to the internal hosts. This prevents some of the performance issues
associated with TCP end-to-end connections through SSH inner tunnels and also enables other
capabilities such as accessing more transparently hosts and services behind the firewall.

Requirements:

Python 2.3 or higher on the remote server side.
sshuttle requires root privileges in your local machine (desktop, laptop, etc), root
privileges in the remote machine are not required.

ssh -D local-port username@public-remote-host

Host public-remote-host
DynamicForward local-port
User username

ssh -D 31733 username@public.a.acnca.pt

sshuttle must be installed in the local client side, sshuttle is not required on the remote
host.
Create an sshutle configuration file for instance in $HOME/.ssh/sshutle-ncg.conf with the
following content:

remote networks plus prefixes one per line (e.g. 192.168.1.0/24)
--auto-nets optional to add networks know by the remote host side.
--dns optionally enables the capture of dns requests and forwards them to the
remote side, use carefully as it may disrupt your local DNS queries. Also if you have
multiple sshuttle instances you can only have one of them capturing and forwarding
the DNS queries.
--auto-hosts to enable discovery of hosts in the remote side
--seed-hosts followed by a line containing remote hostnames separated by
commas that you want to use
--remote followed by a line with the hostname of the public remote host to act as
intermediate host

Template for the sshutle configuration file:

Example that needs to be adjusted to your actual needs:

Invoking sshutle from the command line:

Then you can ssh into the hosts directly:

ip-network-A/ip-prefix-A
ip-network-B/ip-prefix-B
ip-network-X/ip-prefix-X
--auto-nets
--auto-hosts
--seed-hosts
internal-remote-host-01,internal-remote-host-02, ...
--remote
username@public-remote-host

192.168.1.0/24
192.168.2.0/24
--auto-hosts
--seed-hosts
internal.a.acnca.pt, otherinternal.a.acnca.pt, anotherinternal.a.acnca.pt
--remote
username@public.a.acnca.pt

sshuttle @$HOME/.ssh/sshutle-ncg.conf

If the remote internal host has other services running such as a web server they will be also
accessible:

ssh internal.a.acnca.pt

curl http://otherinternal.a.acnca.pt

Enable access to a remote
host
In most cases you will not need to add your own SSH public key to other INCD remote hosts as
there are other processes to do so, namelly:

To get access to the INCD login hosts you will be required to send your SSH public key to
the INCD administrators that will install it where needed and will report back to you.
When using the INCD cloud services you may need to add your SSH key to a VM managed
by yourself. Usually this is done through the Openstack command line interface or through
the Openstack Horizon dashboard when the machine is first created and does not require
other manual intervention. See the INCD cloud documentation here.

However if you need to add a key manually to a remote host account the required steps
are:
1. login into the remote host account or access its home directory through the root

account
2. check if the account directory ~user/.ssh exists in the home directory of the remote

user, if not create it with mkdir ~user/.ssh; chmod u=rwx ~user/.ssh
3. check if the file ~user/.ssh/authorized_keys exists under ~user/.ssh , if not create the file

with touch ~user/.ssh/authorized_keys; chmod u=rw ~user/.ssh/authorized_keys
4. copy the public key to the remote host and append it to the file

~user/.ssh/authorized_keys make sure not to overwrite other keys that may already
exist.

5. If you did the above steps from the root account make sure the files ownership are
correct and if not change them to the correct uid and gid with chown -R user.group
~user/.ssh

https://wiki.incd.pt/shelves/cloud-user-documentation

