
Filesystem User
Guide
Filesystems and data organization in the Cirrus HPC and HTC clusters

Disk Quota Policy
Directories and filesystems
How to transfer files between INCD and a local machine
How to access files belonging to someone else or another project
Lustre

Lustre Basics
Lustre best practices

Disk Quota Policy
To prevent storage misuse and problems resulting from filesystems becoming full, INCD has
implemented the following data usage policies and limits.

File system Hard Limit Exceeded

/home Once quota or number of files exceeded, new files will not
be allowed. No automatic warning implemented. This may
lead to login problems.

/data/unixgrp Once quota or number of files exceeded, new files will not
be allowed and all jobs will fail. No automatic checks
implement and users are allowed to submit jobs and run
then even no quota available.

There are two conventions for defining digital storage capacities, namely, base 2 (1KB =
1024 bytes) and base 10 (1KB = 1000 bytes), and both are in common use. At INCD we
follow Base 2, the following definitions are used when referring to digital storage
capacities (filesystem quota limits, usage, etc.):

Convertion Table -- --

1 KiloByte (KB) 2 ^ 10 1024 bytes

1 MegaByte (MB) 2 ^ 20 1048576 bytes

1 GigaByte (GB) 2 ^ 30 1073741824 bytes

1 TeraByte (TB) 2 ^ 40 1099511627776 bytes

1 PetaByte (PB) 2 ^ 50 1125899906842624 byte

To know more about quota usage and filesystem please see the directories and

filesystems section

NOTE Users should check in advance if they have enough quota for their jobs
since this may lead to job failures and loss of CPU hours pledged to them.“

https://wiki.incd.pt/books/filesystem-user-guide/page/directories-and-filesystems
https://wiki.incd.pt/books/filesystem-user-guide/page/directories-and-filesystems

Directories and filesystems
The INCD filesystems are based on the Lustre shared filesystem which is mounted in the compute
nodes and in the submission/login nodes. Lustre is mostly suited to the storage of large/huge files.

For more specific information regarding the Lustre deployment at INCD please see the
lustre section

Summary
INCD-Lisbon cluster

Name[1] Purpose Availability Quota [2] TimeLimit [3] Backup

/home/unixgrp/us
er

User default
home

always 20GB/user none no

/data/unixgrp Group data large
data files [4].

always 100GB/group temporary (will
be deleted after
6 months)[4]

no

/exper-
sw/unixgrp

Install software
for groups

on request 20GB/group permanent no

ISEC-Coimbra cluster
Name[1] Purpose Availability Quota [2] TimeLimit [3] Backup

/home/ User default
home

always none no

INCD-Minho cluster
Name[1] Purpose Availability Quota [2] TimeLimit [3] Backup

http://docs.ncg.ingrid.pt/books/filesystem-user-guide/chapter/lustre

/home/unixgrp/us
er

User default
home

always 200GB/user none no

/scratch/unixgrp/
user

User working
directory

always 10TB/group none no

[1] Each user belongs to a Unix group: unixgrp - determined by the project they are attached to
[2] Increases to these quotas will be considered on a case-by-case basis.
[3] Time limit defines time after which a file is erased on the file system since its most recent
access time, as defined by the file access timestamp.
[4] This folder has read+write permission to all users belong same group

Filesystems
/home

Intended to be used for source code, executables and immutable data (input files etc),
NOT large data sets.
Globally accessible from all nodes within a system.
Quotas apply. Please read our Disk Quota Policy To know your actual quota limit:

/data

Each project has a directory with pathname /data/unixgrp on each compute node. Users
connected to the project have rwx permissions in that directory and so may create their
own files in those areas.
Globally accessible from all nodes within a system.
Quotas apply. Please read our Disk Quota Policy To know your actual quota limite:

NOTE: To know your unix group id type the command: id“

lfs quota -uh username /home/unixgrp/username

Disk quotas for usr username (uid XXXXXX):
 Filesystem used quota limit grace files quota limit grace
 /home/unixgrp/username 11.6G 20G 20G - 1395 10400 10400 -

NOTE: if your used >=quota users are not allowed to write“

http://docs.ncg.ingrid.pt/books/filesystem-user-guide/page/disk-quota-policy
http://docs.ncg.ingrid.pt/books/filesystem-user-guide/page/disk-quota-policy

/exper-sw

Intended to be used for software, shared by group
Globally accessible from all nodes within a system.
Permissions to use based on request

lfs quota -uh username /data/unixgrp

Disk quotas for usr username (uid XXXXXX):
 Filesystem used quota limit grace files quota limit grace
 /data/unixgrp/ 219.6G 300G 300G - 81395 1102400 102400 -

NOTE: There are also limits on the number of files (files) that can be owned by a
group (project) on /data.“

How to transfer files
between INCD and a local
machine

rsync
To transfer files from your local machine to INCD, we recommend to use rsync. With appropriate
options, rsync is resumable allowing the transfer to continue in case of drop mid-transfer. The
recommended command line to use on your local machine is:

where src his the path of the files on your local machine and dst will be the path to your
destination on the appropriate host.

For example:

NOTE Please note that INCD Lustre storage is not designed for small files.
Attempting to store or retrieve files less than a few megabytes will result in
extremely poor performance for all users. If you wish to store lots of small files
to massdata, please use a utility such as tar to combine them into a single,
larger file.

“

rsync -avPS src dst

//1. Transfer files from local machine to cirrus.ncg.ingrid.pt:

rsync -avPS /home/myfiles user@cirrus.ncg.ingrid.pt:/data/unixgrp/my_folder/my_files
//where user is your INCD username, and unixgrp is the unix group identifying your project.

//2. Transfer files from INCD to your local machine:
rsync -avPS user@cirrus.ncg.ingrid.pt:/data/unixgrp/my_folder/my_files /home/mylocalfolder/
//where user is your INCD username, unixgrp is the unix group identifying your projec and /home/mylocalfolder/

sshfs
The use of sshfs is a secure convenient way to share external volumes as long the user is able to
open a ssh session.

Suppose we want to share a directory /remote/dir from some remote server named
server.remote.pt on the local user interface cirrus at subdirectory mydata. If the remote username
is remuser, execute on CIRRUS user interface:

when finish the user can unmount the remote volume with the command

The user will have on local mount directory the same permission to access the volume as on the
remote server.

it's a local machine folder.

$ mkdir mydata
$ sshfs remuser@server.remote.pt:/remote/dir mydata
$ df
Filesystem 1K-blocks Used Available Use% Mounted on
server.remote.pt:/remote/dir 841572128 83471036 715328408 11% /users2/<group>/<user>/mydata
$ ls -l mydata
$ cp mydata/some_file local/workdir

$ fusermount -u mydata

The mount point will be available only on the local node. For example, if the user
mount the volume on the user interface this directory content will not be
available on the workernodes. This is a convenient way to access and copy files
between sites but it is not suited to be used within a batch job, particularly on a
MPI batch job with multiple nodes.

“

How to access files
belonging to someone else
or another project
Users are allowed to change the default permissions file permissions in all folders they own. The
default access rights to INCD filesystem is the folllowing:

/home

All files under /home are only accessible by the user.

/data

All files under /data/unixgrp/ are rwx for all users belonging to that group.

Example on how to change permissions for user abc123 belonging to group xyz:

On this example the file owner (abc123) has read, write and execute (rwx) for myfile while
the group (xyz) has read and execute (r-x) rights and the remaining of users has read
access (r--).
Now giving permissions for user def456 to read my files and folders:

Now giving permissions for a group abc:

//1 listening the files on a given folder

ls -l
drwxr--r-- 1 abc123 xyz 4096 Nov 25 11:03 mydir
-rwxr-xr-- 1 abc123 xyz 4126231 Nov 25 15:42 myfile

//2 Changing file permissions

setfacl -Rm u:def456:rwx mydir
setfacl -Rm d:u:def456:rwx mydir (this options only applies to new files)

//2 Changing file permissions

for further details on file permission and atributes in linux filesystems click here

setfacl -Rm g:abc:rwx mydir
setfacl -Rm d:g:abc:rwx mydir (this options only applies to new files)

NOTE We don’t recommend using chmod o+r, chmod o+w, or chmod o+x to
give non-group members access to your project’s files. Instead, you should use
access control lists to limit the access privileges of specific users

“

https://wiki.archlinux.org/index.php/File_permissions_and_attributes

Lustre
Lustre basic description on INCD infrastructure

Lustre

Lustre Basics
The latest Lustre documentation is available at Lustre

http://lustre.org/documentation/

Lustre

Lustre best practices
Distributed filesystems such as Lustre are ideal for HPC and HTC environments. In these
environments the typical workload consists of large files that have to be accessed from many
compute nodes with very high bandwidth and/or low latency. Therefore these filesystems are very
different from the filesystems used on desktop computers or isolated servers. Although they excel
at handling large files, they also have strong limitations when handling small files and access
patterns more commonly found in enterprise and desktop environments. Operations that can be
extremely fast on a workstation local disk can be painfully slow and expensive on a Lustre
filesystem, affecting both the users performing those operations and eventually all other users.
These best practices and recommendations are aimed to enable a smooth use of Lustre by
minimizing or avoiding unnecessary or very expensive filesystem operations.

Avoid accessing attributes of files and directories
Accessing metadata information such as file attributes (e.g. type, ownership, protection, size,
dates, etc) in Lustre is resource intensive and can degrade the filesystem performance, especially
when performed frequently or over large directories. Minimize the use of system calls that access
or modify these attributes such as stat() , statx() , open() , openat() , etc.

The same applies to commands like ls -l or ls --color that make use of above mentioned calls.
Instead use a simple ls or ls -l filename .

Avoid using commands that access metadata massively
Avoid using commands such as ls -R , find , locate , du , df and similar. These commands walk the
filesystem recursively and/or perform heavy metadata operations. They are very intensive on
accessing filesystem metadata and can degrade badly the overall file system performance. If
walking the filesystem recursively is absolutely required, then use the Lustre provided lfs find
instead of find and similar tools.

Use the Lustre lfs command
To minimize the number of Lustre RPC calls, whenever possible use the lfs commands instead of
the system provided commands:

lfs df => instead of df
lfs find => instead of find

Avoid using wild cards

Expanding the wild cards is resource intensive. Executing commands with wildcards on a very large
numbers of files may take a very long time and badly impact the filesystem performance. Instead
of using wild cards, create a list of the target files and apply the command to each of these files.

Read Only Access
Whenever possible open the files as read-only using O_RDONLY , furthermore if you don’t need to
update the file access time then open the files as O_RDONLY | O_NOATIME . If access time information
is needed while performing parallel I/O then, let the master process open the files as O_RDONLY
and all other ranks open the same files as O_RDONLY|O_NOATIME .

Avoid having a large number of files in a single directory
When a file is accessed, Lustre places a lock on the parent directory. When many files in the same
directory are to be opened this creates contention. Writing thousands of files to a single directory
produces massive load on Lustre metadata servers, often resulting on taking filesystems offline.
Accessing a single directory containing thousands of files can cause heavy resource contention
degrading the filesystem performance.

The alternative is to organize the data into multiple sub-directories and split the files across them.
A common approach is to use the square root of the number of files, for instance for 90000 files the
square root would be 300, therefore 300 directories should be created containing 300 files each.

Avoid small files
Accessing small files on the Lustre filesystem is very inefficient. The recommended file size is
above 1GB. Reorganize the data in large files or use file formats such as HDF5 or NetCDF.
Alternatively if the total size of the files is small such as a few gigabytes then copy the small files to
/tmp or to a scratch directory local to each compute node at the beginning of the job (do not forget
to transfer and/or delete the files in the end). This approach can be combined with the use of
archival tools such as tar to store the small files in one or more large tarballs that can be kept on
Lustre more efficiently. When data is read-only, another alternative is to create a disk image and
mount it read-only through loopback in each cluster node as described in (ref 4). Container tools
such as singularity can also enable the use of loopback mounted disk images.

Avoid small buffer sizes
When reading or writing to files, Lustre performs much better with large buffer sizes (>= 1MB).
Aggregating small read and write operations into larger ones is highly recommended. MPI-IO
Collective Buffering enables aggregate I/O.

Avoid small repetitive file operations
Avoid performing repetitive small I/O operations such as frequently opening files in append mode,
write small amounts of data, and close the file. Instead open the file once perform all I/O operations
and close.

Avoid multiple processes opening the same files at the same time
Multiple processes opening the same files at the same time can create contention and file open
errors. Instead perform the open from a single process (master), or open the file read-only to avoid
locking, or implement the open with a try and error approach with a sleep in case of error.

Avoid accessing the same file region from many processes
If multiple processes access the same file region at the same time, the Lustre distributed lock
manager enforces coherency so that all clients see consistent results. Having many processes
trying to access the same file region simultaneously can cause performance degradation.

In this case it might be preferable to either: replicate the file, split the file, perform the I/O
operations from a single process rank or make sure simultaneous access will not occur. In any case
it is recommended to keep the amount of file-open and file-lock operations in parallel as small as
possible to reduce contention.

Appending to the same file from many processes
This is similar to the previous recommendation. If multiple processes try to append to the same file
this will trigger locking and this can cause heavy contention. Ideally only one process should
append each file.

File operations through the master
When accessing small shared files in a parallel job it is often more efficient to perform all the
required operations through the master process and if needed broadcast the data to the other
ranks, instead of accessing the same files from every rank. Similarly, if multiple ranks of a parallel
job require information regarding a given file, the most efficient approach is to have the master
process performing the required calls (e.g. stat() , fstat() , etc) and then broadcast the information
to the other ranks. For an example see “Broadcast Stat” in (ref 3).

File Striping
In Lustre large files can be split into segments that in turn can be automatically spread across
multiple storage devices. File striping is useful for parallel I/O over large files. For this to work the
mount point in question must be backed by multiple storage devices (OSTs). The command lfs df
can be used to verify if a given mount point is backed by multiple OSTs. To obtain file striping
information for a given file use:

lfs getstripe filename

The file striping can be set using the command lfs setstripe . If the command is applied to a directory
it will define the default stripe settings for files created in that directory. A subdirectory inherits all
stripe settings from its parent directory. If the command is applied to a file it will stripe that file
across OSTs according to the specified settings.

lfs setstripe -s 64m -c 4 filename => split filename in 64MB segments and spread it across 4
OSTs

If a large file is to be shared in parallel by several ranks (processes) having each rank working on
its own portion of the file, then it might be useful to stripe the file in a number of segments equal to
the number of processes, or a multiple of the number of processes.

For maximum performance I/O requests should be stripe aligned, this means that the processes
accessing the file should do it at offsets that match the stripe boundaries. This minimizes the
chances of a process having to access more than one segment (and more than one OST) to obtain
the required data.

For small files striping should be disabled, this can be achieved by setting a stripe count of 1. The
same applies if a large file will be accessed by a single process.

lfs setstripe -s 1m -c 1 mydirectory/smallfilesdir/

Avoid installing software on Lustre
Software is usually composed of many small files and as previously mentioned accessing many
small files on Lustre can place a huge load on metadata servers. The software compilations in
particular can be better performed locally by copying or untaring the software to the /tmp/$USER/ of
a login server.

Furthermore, under high load I/O access to the Lustre file systems may block. If executables are
stored in Lustre and access to the filesystem fails the executables may crash. Therefore, whenever
possible, it is better to copy the executables to the /tmp of the cluster nodes.

To address these issues the INCD compute environment includes a special read-only caching
filesystem (CVMFS from CERN) that provides scalable software distribution within and across
compute clusters. Contact the INCD support if deployment of software on the INCD CVMFS is
desired.

File locking with flock
If applications are carefully designed the use of flock is not strictly necessary since Lustre can keep
non-overlapping writes consistent, and can handle concurrent file append operations. Depending
on the Lustre version the use of flocks may have a performance impact.

Backups
Perform regular backups of your data to a safe location. INCD does not perform data backups.

References
These best practices have been compiled from the INCD experience and from the following
sources:

1. https://www.nas.nasa.gov/hecc/support/kb/lustre-best-practices_226.html
2. https://hpcf.umbc.edu/general-productivity/lustre-best-practices/
3. http://researchcomputing.github.io/meetup_fall_2014/pdfs/fall2014_meetup10_lustre.pdf
4. http://www.prace-ri.eu/IMG/pdf/WP245.pdf
5. https://opus.nci.org.au/display/Help/Lustre Best Practices#LustreBestPractices-

7)LimittheNumberofProcessesPerformingParallelI/O
6. https://wiki.gsi.de/foswiki/bin/view/Linux/LustreFs

https://www.nas.nasa.gov/hecc/support/kb/lustre-best-practices_226.html
https://hpcf.umbc.edu/general-productivity/lustre-best-practices/
http://researchcomputing.github.io/meetup_fall_2014/pdfs/fall2014_meetup10_lustre.pdf
http://www.prace-ri.eu/IMG/pdf/WP245.pdf
https://opus.nci.org.au/display/Help/Lustre%20Best%20Practices#LustreBestPractices-7)LimittheNumberofProcessesPerformingParallelI/O
https://opus.nci.org.au/display/Help/Lustre%20Best%20Practices#LustreBestPractices-7)LimittheNumberofProcessesPerformingParallelI/O
https://wiki.gsi.de/foswiki/bin/view/Linux/LustreFs

