Lustre

Lustre basic description on INCD infrastructure

e Lustre Basics

e Lustre best practices

Lustre Basics

The latest Lustre documentation is available at Lustre

http://lustre.org/documentation/

Lustre best practices

Distributed filesystems such as Lustre are ideal for HPC and HTC environments. In these
environments the typical workload consists of large files that have to be accessed from many
compute nodes with very high bandwidth and/or low latency. Therefore these filesystems are very
different from the filesystems used on desktop computers or isolated servers. Although they excel
at handling large files, they also have strong limitations when handling small files and access
patterns more commonly found in enterprise and desktop environments. Operations that can be
extremely fast on a workstation local disk can be painfully slow and expensive on a Lustre
filesystem, affecting both the users performing those operations and eventually all other users.
These best practices and recommendations are aimed to enable a smooth use of Lustre by
minimizing or avoiding unnecessary or very expensive filesystem operations.

Avoid accessing attributes of files and directories

Accessing metadata information such as file attributes (e.g. type, ownership, protection, size,
dates, etc) in Lustre is resource intensive and can degrade the filesystem performance, especially
when performed frequently or over large directories. Minimize the use of system calls that access
or modify these attributes such as stat() , statx(), open(), openat() , etc.

The same applies to commands like Is-I or Is--color that make use of above mentioned calls.
Instead use a simple Is or Is -l filename .

Avoid using commands that access metadata massively

Avoid using commands such as Is-R, find, locate, du, df and similar. These commands walk the
filesystem recursively and/or perform heavy metadata operations. They are very intensive on
accessing filesystem metadata and can degrade badly the overall file system performance. If
walking the filesystem recursively is absolutely required, then use the Lustre provided Ifs find
instead of find and similar tools.

Use the Lustre Ifs command

To minimize the number of Lustre RPC calls, whenever possible use the Ifs commands instead of
the system provided commands:

e Ifs df => instead of df
e Ifs find => instead of find

Avoid using wild cards

Expanding the wild cards is resource intensive. Executing commands with wildcards on a very large
numbers of files may take a very long time and badly impact the filesystem performance. Instead

of using wild cards, create a list of the target files and apply the command to each of these files.

Read Only Access

Whenever possible open the files as read-only using 0 RDONLY , furthermore if you don’t need to
update the file access time then open the files as 0 RDONLY | O NOATIME . If access time information
is needed while performing parallel I/O then, let the master process open the files as O_RDONLY
and all other ranks open the same files as O_RDONLY|O_NOATIME .

Avoid having a large number of files in a single directory

When a file is accessed, Lustre places a lock on the parent directory. When many files in the same
directory are to be opened this creates contention. Writing thousands of files to a single directory
produces massive load on Lustre metadata servers, often resulting on taking filesystems offline.
Accessing a single directory containing thousands of files can cause heavy resource contention
degrading the filesystem performance.

The alternative is to organize the data into multiple sub-directories and split the files across them.
A common approach is to use the square root of the number of files, for instance for 90000 files the
square root would be 300, therefore 300 directories should be created containing 300 files each.

Avoid small files

Accessing small files on the Lustre filesystem is very inefficient. The recommended file size is
above 1GB. Reorganize the data in large files or use file formats such as HDF5 or NetCDF.
Alternatively if the total size of the files is small such as a few gigabytes then copy the small files to
/tmp or to a scratch directory local to each compute node at the beginning of the job (do not forget
to transfer and/or delete the files in the end). This approach can be combined with the use of
archival tools such as tar to store the small files in one or more large tarballs that can be kept on
Lustre more efficiently. When data is read-only, another alternative is to create a disk image and
mount it read-only through loopback in each cluster node as described in (ref 4). Container tools
such as singularity can also enable the use of loopback mounted disk images.

Avoid small buffer sizes

When reading or writing to files, Lustre performs much better with large buffer sizes (>= 1MB).
Aggregating small read and write operations into larger ones is highly recommended. MPI-IO
Collective Buffering enables aggregate /0.

Avoid small repetitive file operations

Avoid performing repetitive small I/0 operations such as frequently opening files in append mode,
write small amounts of data, and close the file. Instead open the file once perform all I/O operations
and close.

Avoid multiple processes opening the same files at the same time

Multiple processes opening the same files at the same time can create contention and file open
errors. Instead perform the open from a single process (master), or open the file read-only to avoid
locking, or implement the open with a try and error approach with a sleep in case of error.

Avoid accessing the same file region from many processes

If multiple processes access the same file region at the same time, the Lustre distributed lock
manager enforces coherency so that all clients see consistent results. Having many processes
trying to access the same file region simultaneously can cause performance degradation.

In this case it might be preferable to either: replicate the file, split the file, perform the 1/0
operations from a single process rank or make sure simultaneous access will not occur. In any case
it is recommended to keep the amount of file-open and file-lock operations in parallel as small as
possible to reduce contention.

Appending to the same file from many processes

This is similar to the previous recommendation. If multiple processes try to append to the same file
this will trigger locking and this can cause heavy contention. Ideally only one process should
append each file.

File operations through the master

When accessing small shared files in a parallel job it is often more efficient to perform all the
required operations through the master process and if needed broadcast the data to the other
ranks, instead of accessing the same files from every rank. Similarly, if multiple ranks of a parallel
job require information regarding a given file, the most efficient approach is to have the master
process performing the required calls (e.g. stat(), fstat(), etc) and then broadcast the information
to the other ranks. For an example see “Broadcast Stat” in (ref 3).

File Striping

In Lustre large files can be split into segments that in turn can be automatically spread across
multiple storage devices. File striping is useful for parallel I/O over large files. For this to work the
mount point in question must be backed by multiple storage devices (OSTs). The command Ifs df
can be used to verify if a given mount point is backed by multiple OSTs. To obtain file striping
information for a given file use:

e |fs getstripe filename

The file striping can be set using the command Ifs setstripe . If the command is applied to a directory
it will define the default stripe settings for files created in that directory. A subdirectory inherits all
stripe settings from its parent directory. If the command is applied to a file it will stripe that file
across OSTs according to the specified settings.

e |Ifs setstripe -s 64m -c 4 filename => split filename in 64MB segments and spread it across 4
OSTs

If a large file is to be shared in parallel by several ranks (processes) having each rank working on
its own portion of the file, then it might be useful to stripe the file in a number of segments equal to
the number of processes, or a multiple of the number of processes.

For maximum performance 1/O requests should be stripe aligned, this means that the processes
accessing the file should do it at offsets that match the stripe boundaries. This minimizes the
chances of a process having to access more than one segment (and more than one OST) to obtain
the required data.

For small files striping should be disabled, this can be achieved by setting a stripe count of 1. The
same applies if a large file will be accessed by a single process.

e |fs setstripe -s 1m -c 1 mydirectory/smallfilesdir/

Avoid installing software on Lustre

Software is usually composed of many small files and as previously mentioned accessing many
small files on Lustre can place a huge load on metadata servers. The software compilations in
particular can be better performed locally by copying or untaring the software to the /tmp/$USER/ of
a login server.

Furthermore, under high load I/O access to the Lustre file systems may block. If executables are
stored in Lustre and access to the filesystem fails the executables may crash. Therefore, whenever
possible, it is better to copy the executables to the /tmp of the cluster nodes.

To address these issues the INCD compute environment includes a special read-only caching
filesystem (CVMFS from CERN) that provides scalable software distribution within and across
compute clusters. Contact the INCD support if deployment of software on the INCD CVMFS is
desired.

File locking with flock

If applications are carefully designed the use of flock is not strictly necessary since Lustre can keep
non-overlapping writes consistent, and can handle concurrent file append operations. Depending
on the Lustre version the use of flocks may have a performance impact.

Backups

Perform regular backups of your data to a safe location. INCD does not perform data backups.

References

These best practices have been compiled from the INCD experience and from the following
sources:

1. https://www.nas.nasa.gov/hecc/support/kb/lustre-best-practices 226.html

2. https://hpcf.umbc.edu/general-productivity/lustre-best-practices/

https://www.nas.nasa.gov/hecc/support/kb/lustre-best-practices_226.html
https://hpcf.umbc.edu/general-productivity/lustre-best-practices/

. http://researchcomputing.github.io/meetup fall 2014/pdfs/fall2014 meetuplO lustre.pdf

. http://www.prace-ri.eu/IMG/pdf/WP245.pdf

. https://opus.nci.org.au/display/Help/Lustre Best Practices#LustreBestPractices-

7)LimittheNumberofProcessesPerformingParallell/O

. https://wiki.gsi.de/foswiki/bin/view/Linux/LustreFs

http://researchcomputing.github.io/meetup_fall_2014/pdfs/fall2014_meetup10_lustre.pdf
http://www.prace-ri.eu/IMG/pdf/WP245.pdf
https://opus.nci.org.au/display/Help/Lustre%20Best%20Practices#LustreBestPractices-7)LimittheNumberofProcessesPerformingParallelI/O
https://opus.nci.org.au/display/Help/Lustre%20Best%20Practices#LustreBestPractices-7)LimittheNumberofProcessesPerformingParallelI/O
https://wiki.gsi.de/foswiki/bin/view/Linux/LustreFs

