
Jorge Gomes

Jorge Gomes <jorge@lip.pt>

Lightweight Virtualization

Jorge Gomes

O.S

COMPUTER

STORAGE

Virtualization many types ...

Type Some examples

• Network Virtualization: VLANs, vswitches, …

• Storage Virtualization: Logical Volumes, …

• Computer Virtualization: Virtual Machines, …

• Operating System Virtualization: Containers, …

CABLE

Jorge Gomes

Virtual Machine

“Virtual Machine an efficient, isolated duplicate of a real
computer machine.”

Formal Requirements for Virtualizable Third Generation Architectures (1974)

Gerald J. Popek and Robert P. Goldberg

I’m efficient Me too

Jorge Gomes

PHYSICAL MACHINE

Computer virtualization

We are going to focus on Virtual Machines (VM).

VIRTUALIZATION LAYER (SW / HW)

VIRTUAL MACHINES

Jorge Gomes

• 1966 CP/40 for S/360-40
• research project, introduced CP and CMS
• first full virtualization capable system

• 1967 IBM CP/CMS for S/360-67
• first virtualization in production

• 1972 IBM VM/370 => CP/CMS for IBM S/370

History

CMS CMS

CP

CMS Cambridge Monitor System (CMS)

Control Program(CP)  hypervisor

Mainframe Hardware

App A App B App C App D Applications

CERN 370/168

1976

IBM S/360 Model 67-2

1969

Jorge Gomes

• Late 90’s the microprocessors become more powerful
and multiprocessor machines (SMP) cheap.

• A single microprocessor based machine could now
support multiple services and/or applications.

• Virtualization gained interest again.

• 1999 VMware workstation
• 2000 User Mode Linux (UML)
• 2003 Xen for Linux

History

Pentium Pro (1995)
supported dual and
quad CPU configurations

Jorge Gomes

Types of Virtualization

Jorge Gomes

Bare metal vs Virtualization

OS Y

OS Y OS Z

Hypervisor / Host OS

App A

OS Z

App B

App A App B

VM 1 VM 2

Bare metal Virtualization

App C

App C

HOST

GUEST

C
o

n
so

lid
at

io
n

Physical Machine

Physical Machine 2

Physical Machine 1

• Less space
• Less energy
• Less hardware
• Easier to manage

• Faster provisioning
• More flexibility
• Burst to cloud

Jorge Gomes

Common types of virtualization

GUEST OS

HOST OS

•Both kernels unchanged
•Emulated hardware
•Ex. QEMU

HOST OS

OS

Emulation Paravirtualization Hardware assisted
virtualization

Emulator paravirtualized

paravirtualized

hypervisor

OS

•Both kernels changed
•Emulation replaced by
hypercalls to the host

•Ex. Xen

•Both kernels unchanged
•Emulation replaced by
hardware assisted
hypervisor

•Ex. KVM

GUEST OS GUEST OS GUEST OS

Jorge Gomes

Rings and hardware virtualization
App

OS KERNEL

App

HYPERVISOR

App

OS KERNEL

App App

OS KERNEL

App

RING 0

RING 1

RING 2

RING 3

RING -1

• Rings are hierarchical protection domains within the CPU
• Lower rings have higher privileges in the processor
• Intel VT-x and AMD-V add a ring -1 for hypervisors

Jorge Gomes

Operating System Level
Virtualization
a.k.a Containers

Jorge Gomes

Why do we need hypervisors ?

We need VM hypervisors because OSes are not capable…
“hypervisors are the living proof of operating system's
incompetence.”

The Failure of Operating Systems & How We Can Fix It

Use different operating system implementations in the same

physical machine (eg. Linux and Windows simultaneously)

Limit security breaches (isolation between applications or

operating systems)

Better resource allocation and consumption control

(memory, CPU, IO bandwidth, etc)

Flexible infrastructure (easier provisioning, capacity and

resource management in large facilities)

Use same OS or very similar but with different system

environments customized for several applications

X

X

X

X

X

Jorge Gomes

Depending on the purpose hypervisors and virtual
machines can be the wrong tool for the job ...

Jorge Gomes

Operating system level virtualization

isolation isolation

App A App B

OS

OS OS

Hypervisor / Host OS

App A App B

VM VM

C
o

n
ve

n
tio

n
al

virtu
alizatio

n

O
S le

ve
l

virtu
alizatio

n

• Multiple environments via OS isolation features
• OS can limit what processes can do and see
• Same OS kernel is shared and directly used
• More efficient than VMs
• Only for OSes with same kernel (ex. Ubuntu and CentOS)

VM 1 VM 2

Physical Machine Physical Machine

Jorge Gomes

OS level virtualization advantages
• Less memory consumption

– No need of duplicated kernels and related processes
– No duplication of buffering and shared memory
– Less memory split across execution domains

• Faster I/O and execution and less latency
– Direct execution on top of one single kernel
– No emulation, No hypercalls, No buffer copies

• Don’t need to run OS services in each isolated environment
– No need of duplicated NTP, SNMP, CRON, DHCP, SYSLOG, SMART, etc

• Much faster start–up times
– No OS boot, smaller images to transfer and store

• Less management effort
– Only the host machine needs to be managed (many-core is great)

Jorge Gomes

OS level virtualization also not new
Year File

system

isolation

I/O limits Memory

limits

CPU

quotas

Network

isolation

Root

priv

isolation

chroot Most

unix

systems

1982 Х

Jail FreeBSD 1998 X X X X X X

Linux-

VServer

Linux 2001 X X X X X X

Virtuozzo

Containers

Linux

Windows

2001 X X X X X X

Zones Solaris 2004 X X X X X X

OpenVZ Linux 2005 X X X X X X

HP

Containers

HP/UX 2007 X X X X X

LXC Linux 2008 X X X X X X

Docker Linux 2013 X X X X X X

Wikipedia, The Free Encyclopedia. Wikimedia Foundation

Jorge Gomes

Linux kernel features
• Kernel namespaces: isolate system resources from process

perspective
– Mount namespaces: isolate mount points
– UTS namespaces: hostname and domain isolation
– IPC namespaces: inter process communications isolation
– PID namespaces: isolate and remap process identifiers
– Network namespaces: isolate network resources
– User namespaces: isolate and remap user/group identifiers
– Cgroup namespaces: isolate Cgroup directories

• Seccomp: system call filtering
• Cgroups: process grouping and resource consumption limits
• POSIX capabilities: split/enable/disable root privileges
• chroot: isolated directory trees
• AppArmor and SELinux: kernel access control

Jorge Gomes

Namespaces

You are already using them !

$ ls -l /proc/$$/ns
total 0

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 cgroup -> cgroup:[4026531835]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 ipc -> ipc:[4026531839]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 mnt -> mnt:[4026531840]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 net -> net:[4026531993]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 pid -> pid:[4026531836]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 pid_for_children -> pid:[4026531836]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 user -> user:[4026531837]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 uts -> uts:[4026531838]

Jorge Gomes

Container

Therefore much more efficient

Runs programs as processes in a standard way

No emulation or hypervisors

Just process isolation

Jorge Gomes

Containers and isolation
user processes

programs, services

namespaces

isolation

seccomp

system call filtering

selinux/apparmor

access control

Jorge Gomes

Host Ubuntu

Container putting it together

Mount
namespace

/

/home

mount
filesystem

/

/etc /bin /home mount
bind

Pid
namespace

loopback
Volume

losetup /dev/loop0 image.img

CentOS 6

Program

losetup /dev/loop0 example.img mount /dev/loop0 /home/you/dirlosetup /dev/loop0 example.img mount /dev/loop0 /home/you/dir

Jorge Gomes

Container putting it together

To create a container image:
– Add the required OS libraries, OS commands to the container
– Add the required user programs and data to the container

Can I run another Linux distribution using containers ?
– Yes sure
– The Linux kernel ABI remains largely unchanged across versions

Containers are usually started by the root user:
– Some operations require privileges
– Can be root user inside a container without affecting the host or the

other containers (with POSIX capabilities, seccomp and namespaces)

Jorge Gomes

LXC/LXD

Jorge Gomes

Linux Containers project (LXC)

• First open source project to provide a toolset for containers

• Create and manage containers using the Linux Kernel features:
– liblxc library
– Bindings for several languages (python, ruby, lua, Go)
– Templates
– Tools to create/manage containers

• Tools:
– lxc-create, lxc-destroy, lxc-start, lxc-stop, lxc-execute, lxc-console,
– lxc-monitor, lxc-wait, lxc-cgroup, lxc-ls, lxc-ps, lxc-info, lxc-freeze,
– lxc-unfreeze

– Limitations:
– Requires considerable knowledge and effort

Jorge Gomes

LXD
• Newer development from the original Linux Containers project
• Pushed and supported by Canonical (Ubuntu)

• Objective:
 Provide an environment to run complete Linux OS distributions within

containers
 More similar to an hypervisor but using namespaces
 “boot” the almost complete OS distribution
 Images are tarballs

• Limitations:
 Limited support and adoption beyond Ubuntu
 Fairly recent

Jorge Gomes

docker

Jorge Gomes

Docker
• Docker containers are oriented to services composition:

– (Services or Applications) + (runtime environment)
– Self-contained and lightweight
– Run it everywhere (Linux)

• DevOps integration of IT development and operations
– DevOps requires strong automation
– Developers: focus on what's inside the container
– Operations: may focus in the underlying infrastructure

docker run -i -t centos:centos6
[root@28f89ada747e /]# cat /etc/redhat-release
CentOS release 6.8 (Final)

Jorge Gomes

Docker
• Docker images can be fetched from the Docker Hub repository

• There are other Docker container repositories besides Docker Hub
• Very convenient to transfer and share containers pull/push

Jorge Gomes

Docker

• Docker container image is composed of:
I. Multiple file-system layers each one:

a. metadata
b. tarball with the files for the layer

II. Manifesto
III. Ancestry

• Layers have unique ids and can be shared by multiple images
• Layers decrease storage space and transfer time

• e.g. the same OS layer can be shared by many services and applications,
avoiding duplication and downloading

Layer 1: Base OS

Layer 2: Packages

Layer 3: User software

Layer 4: Updates

Jorge Gomes

Docker
• Common format to distribute and manage images:

– Layered file-system based
– At the host level implemented by AUFS, device-mapper thin snapshots

– New images can be easily created from existing ones
– Created by using Dockerfiles and docker build

Layer 1: centos:latest (ro)

Layer 2: apache + php (ro)

Layer 3: /var/www/app (ro)

Top layer execution (rw)

Layers

FROM centos:centos6
RUN yum install –y httpd php
COPY /my/app /var/www/app
EXPOSE 80
ENTRYPOINT /usr/sbin/httpd
CMD [“-D”, “FOREGROUND”]

Dockerfile

Jorge Gomes

Docker in numbers

• DockerCon conference 2017 (> 5500 attendees)

• More than 14M Docker hosts
• More than 900K Docker apps in repositories
• 77,000% growth in Docker job listings
• More than 12B image pulls (accounting for 390,000%

growth)
• More than 3,300 contributors
• More than 280 cities hold Docker meetups, which

accounts for more than 170K members worldwide

• Large ecosystem of tools and frameworks

Jorge Gomes

Scientific Computing
and containers

Is this thing for me ?

Jorge Gomes

Scientific computing and containers
Running applications still requires considerable effort

Computers

• Several computing systems

• Notebooks, Desktops, Farms, Cloud, HPC

OSes

• Several operating systems

• Linux flavors, Distribution versions

Environments

• Specific computing environments

• Compilers, Libraries, Customizations

Applications

• Multiple applications often combined

• Portability, Maintainability, Reproducibility

Need a consistent portable way of running applications

Jorge Gomes

but ...

Jorge Gomes

Limitations

Require root privileges to install, setup and run

• Security concerns especially in multi-user environments

Docker API does not limit privileged actions

• Users with direct access to the API can do anything

• e.g: through the API users can mount local file systems, make
devices accessible, erase disks etc.

Limiting design decisions for end users

• Docker is designed to be used as an hypervisor by operators

• Difficult to use on batch systems because of process control
and security (not suitable)

Jorge Gomes

but ...

seccomppid namespace

mount namespace

ipc namespace net namespace

user namespace

Wizard with root powers

Container

Containers in general ...

Jorge Gomes

udocker

Jorge Gomes

INDIGO-DataCloud H2020 (2015-2017)

Cloud PaaS
easy execution
across systems
cloud, grid, etc

Jorge Gomes

INDIGO-DataCloud containers for batch
• How to run Docker in batch systems ?

• Can we run Docker in batch system ?
• If so how to integrate it with the batch system ?
• How to make it respect batch system policies ?
• How to make it respect batch system actions ?
• How to collect accounting ?

• How to run containers without Docker ?
• Can we download container images ?
• Can we run without a layered filesystem ?
• Can we run them as normal user ?
• Can we enforce container metadata ?

b
d

o
c
k

e
r

u
d

o
c
k

e
r

Jorge Gomes

udocker
• Run applications encapsulated in docker containers:

• without using docker
• without using privileges
• without system administrators intervention
• without additional system software

• and run:
• as a normal user
• with the normal process controls and accounting
• in interactive or batch systems

Jorge Gomes

INDIGO-DataCloud udocker

udocker in open source

https://github.com/indigo-dc/udocker
• https://github.com/indigo-dc/udocker/tree/master
• https://github.com/indigo-dc/udocker/tree/devel

https://github.com/indigo-dc/udocker/tree/master/doc

Jorge Gomes

udocker: install from github

$ curl https://raw.githubusercontent.com/indigo-

dc/udocker/master/udocker.py > udocker

$ chmod u+rx udocker

$./udocker install

or devel

Does not require compilation or system installation
Tools are delivered statically compiled

Jorge Gomes

udocker: pull images from repository

$ udocker pull ubuntu:14.04

Downloading layer: sha256:bae382666908fd87a3a3646d7eb7176fa42226027d3256cac38ee0b79bdb0491
Downloading layer: sha256:f1ddd5e846a849fff877e4d61dc1002ca5d51de8521cced522e9503312b4c4e7
Downloading layer: sha256:90d12f864ab9d4cfe6475fc7ba508327c26d3d624344d6584a1fd860c3f0fefa
Downloading layer: sha256:a57ea72e31769e58f0c36db12d25683eba8fa14aaab0518729f28b3766b01112
Downloading layer: sha256:783a14252520746e3f7fee937b5f14ac1a84ef248ea0b1343d8b58b96df3fa9f
Downloading layer: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4

Search for names and tags at:
https://hub.docker.com/

Jorge Gomes

udocker: list local images

$ udocker images

REPOSITORY
msoffice:lastest .
iscampos/openqcd:latest .
fedora:25 .
docker.io/susymastercode/mastercode:latest .

ubuntu:14.04 .
ubuntu:16.10 .
ubuntu:latest .
indigodatacloud/disvis:latest .
jorge/private:latest .
busybox:latest .
jorge_fedora22_32bit:latest .
debian:oldstable .

Jorge Gomes

udocker: create container from image

$ udocker create --name=ub14 ubuntu:14.04

9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 container-id

container-alias

Jorge Gomes

udocker: list containers

$ udocker ps

CONTAINER ID P M NAMES IMAGE
9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 . W ['ub14'] ubuntu:14.04
5c7bd29b-7ab3-3d73-95f9-4438443aa6d6 . W ['myoffice'] msoffice:lastest
676eb77d-335e-3e9a-bf62-54ad08330b99 . W ['fedora_25'] fedora:25
c64afe05-adfa-39de-bf15-dcd45f284249 . W ['debianold'] debian:oldstable
7e76a4d7-d27e-3f09-a836-abb4ded0df34 . W ['ubuntu16', 'S'] ubuntu:16.10
9d12f52d-f0eb-34ae-9f0e-412b1f8f2639 . W ['f25'] fedora:25

container-id alias image

Jorge Gomes

udocker: run container

$ udocker run ub14

**
* *
* STARTING 9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 *
* *
**
executing: bash
root@nbjorge:/# cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04.5 LTS"
root@nbjorge:/# apt-get install firefox

udocker respects container

metadata, if the container has

a default cmd to run it will be

run otherwise starts a shell

root emulation

Jorge Gomes

udocker: run container as yourself

$ udocker run --user=jorge -v /home/jorge \
-e HOME=/jorge/home --workdir=/home/jorge ub14

Warning: non-existing user will be created

**
* *
* STARTING 9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 *
* *
**
executing: bash
jorge@nbjorge:~$ id
uid=1000(jorge) gid=1000(jorge) groups=1000(jorge),10(uucp)
jorge@nbjorge:~$ pwd
/home/jorge
jorge@nbjorge:~$

Jorge Gomes

udocker
How does it work ...

Jorge Gomes

• Implemented
• python, C, C++, go

• Can run:
• CentOS 6, CentOS 7, Fedora >= 23
• Ubuntu 14.04, Ubuntu 16.04
• Any distro that supports python 2.7

• Components:
• Command line interface docker like
• Pull of containers from Docker Hub
• Local repository of images and containers
• Execution of containers with modular engines

udocker:

Jorge Gomes

• Containers
• Are produced from the layers by flattening them
• Each layer is extracted on top of the previous
• Whiteouts are respected, protections are changed
• The obtained directory trees are stored under

~/.udocker/containers in the user home directory

udocker:

.udocker

repos

3745893245728937532

8874564763483752222

1245573456735639321

layers

manifest

TAG

v1, v2

image/tag

containers

d8a08182-2a7b-
3f6d-973e-
62f411060c2e

ROOTEXTRACT

Jorge Gomes

• Execution
• chroot-like

udocker: directories and execution

container
tree in

udocker

usr etc lib varhome

/

user

.udocker

images containerslayers bin lib

9fe2f9e7-ce37-
3be5-b12d-

829a3236d2a6

ROOT
/

container.
json

imagerepo.n
ame

execmode

bin

usr etc lib varbin

chroot to this

directory

becomes the

new root for

container

processes

udocker

directory tree

$HOME/.udocker

Jorge Gomes

• udocker supports several techniques to achieve the
equivalent to a chroot without using privileges
• They are selected per container id via execution modes

udocker: Execution methods

Mode Base Description

P1 PRoot PTRACE accelerated (with SECCOMP filtering)  DEFAULT

P2 PRoot PTRACE non-accelerated (without SECCOMP filtering)

R1 runC rootless unprivileged using user namespaces

F1 Fakechroot with loader as argument and LD_LIBRARY_PATH

F2 Fakechroot with modified loader, loader as argument and LD_LIBRARY_PATH

F3 Fakechroot modified loader and ELF headers of binaries + libs changed

F4 Fakechroot modified loader and ELF headers dynamically changed

S1 Singularity where locally installed using chroot or user namespaces

Jorge Gomes

udocker & Lattice QCD

Scaling
performance as a
function of the
cores for the
computation of
application of the
Dirac operator to
a spinor field.

Using OpenMPI

OpenQCD is a
very advanced
code to run lattice
simulations

udocker in P1 mode

Jorge Gomes

udocker & Biomolecular complexes

Performance
with docker and
udocker are the
same and very
similar to the
host.

Using OpenCL and
NVIDIA GPGPUs

DisVis is being
used in
production with
udocker

Better performance with Ubuntu 16 container
udocker in P1 mode

Jorge Gomes

udocker & Molecular dynamics

udocker P mode
have lower
performance
udocker F mode
same as Docker.

Using OpenCL and
OpenMP

Gromacs is widely
used both in
biochemical and
non-biochemical
systems.

udocker in P1 mode
udocker in F3 modePTRACE SHARED LIB CALL

Jorge Gomes

udocker & Phenomenology

Scanning through
large parameter
spaces. High
Throughput
Computing

C++, Fortran,
many authors,
legacy code

MasterCode
connects several
complex codes.
Hard to deploy.

Compiling Running

HOST 0% 0%

DOCKER 10% 1.0%

udocker 7% 1.3%

VirtualBox 15% 1.6%

KVM 5% 2.6%

Performance Degradation

udocker in P1 mode

Jorge Gomes

udocker & Phenomenology

export MASTERDIR=/gpfs/csic_users/userabc/mastercode
export UDOCKER_DIR=$MASTERDIR/.udocker

udocker.py run --hostauth \
-v /home/csic/cdi/ica/mcpp-master \
-v /home/csic/cdi/ica \
-user=user001 \
-w /home/csic/cdi/ica/mcpp-master mastercode \
/bin/bash -c "pwd; ./udocker-mastercode.sh"

Jorge Gomes

Scientific computing and containers

Scientific

Application

Container

Easy packaging

(Dockerfiles)

Well defined
efficient format

(Docker
container)

Easy distribution
and sharing

(Docker Hub)

Isolation from
changing

environment
(Portability)

Create once and
run when
necessary

(Maintainability)
Self contained
environment

(Reproducibility)

Base for new
containers

(Reusability)

Isolation from
hosts and other

containers
(security)

Low overhead
(baremetal

performance)

Jorge Gomes

https://github.com/indigo-dc/udocker

Thank you

IBM system 360 (1964)

