
DEEP-Hybrid-DataCloud is funded by the Horizon 2020 Framework 
Programme of the European union under grant agreement number 

777435

Jorge Gomes <jorge@lip.pt>

Integration of HPC resources and 
techniques

New Challenges in Data Science: Big Data and Deep Learning 
on Data Clouds

Univ. Internacional Menéndez Pelayo,
18th – 21st June 2018, Santander



Overview

What is High Performance Computing

How a HPC cluster looks like

HPC in the Cloud

Virtualization and containers in HPC



High Performance Computing

High Performance Computing generally refers to the practice of
aggregating computing power in a way that delivers much higher
performance than one could get out of a typical desk computer in
order to solve large computational problems.



HTC and HPC

• High Throughput Computing (HTC)
o Efficient execution of a large number of loosely-coupled tasks (many 

fully independent jobs ex. 1000 jobs of 1 CPU)

• High Performance Computing (HPC)  parallel processing
o Getting the maximum performance for a single tightly coupled task 

running in parallel across many CPUs (ex. 1 job of 1000 CPUs)

Application
Application Application

Application

Application

Application (scale to hundreads or thousands of CPUs)



HTC and HPC

• High Throughput Computing (HTC)
o Many independent computers, no communication between 

application instances.

• High Performance Computing (HPC)  parallel processing
o Very large computers or smaller but interconnect by very fast networks. 
o Instances of the application need to communicate between each other.

Application

Application
Application

Application

Application

Application



Communicate across many processes

 Shared data storage
o write/read to/from a shared file (can be slow)
o Shared storage

 Shared memory
o May require a very large multi processor machine 
o Very specific expensive systems
o Limited scalability

 Local Area Network 
o Conventional machines
o Messages across the network
o Easier/cheaper join multiple machines

 Low latency Network
o Uses a very fast network interconnect (Infiniband, Omni-Path, etc)
o High scalability



HPC clusters



Top500 November 2017
Rank System Cores Rmax (TFlop/s) Rpeak (TFlop/s) Power (kW)

1 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, 
Sunway , NRCPC
National Supercomputing Center in Wuxi - China

10,649,600 93,014.6 125,435.9 15,371

2 Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 
2.200GHz, TH Express-2, Intel Xeon Phi 31S1P , NUDT
National Super Computer Center in Guangzhou – China

3,120,000 33,862.7 54,902.4 17,808

3 Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect 
, NVIDIA Tesla P100 , Cray Inc.
Swiss National Supercomputing Centre (CSCS) – Switzerland

361,760 19,590.0 25,326.3 2,272

4 Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, 
Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler
Japan Agency for Marine-Earth Science and Technology – Japan

19,860,000 19,135.8 28,192.0 1,350

5 Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini 
interconnect, NVIDIA K20x , Cray Inc.
DOE/SC/Oak Ridge National Laboratory - United States

560,640 17,590.0 27,112.5 8,209

6 Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom , IBM
DOE/NNSA/LLNL - United States

1,572,864 17,173.2 20,132.7 7,890

7 Trinity - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries 
interconnect , Cray Inc.
DOE/NNSA/LANL/SNL - United States

979,968 14,137.3 43,902.6 3,844

8 Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect , 
Cray Inc.
DOE/SC/LBNL/NERSC - United States

622,336 14,014.7 27,880.7 3,939

9 Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 
1.4GHz, Intel Omni-Path , Fujitsu
Joint Center for Advanced High Performance Computing – Japan

556,104 13,554.6 24,913.5 2,719

10 K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect , Fujitsu
RIKEN Advanced Institute for Computational Science (AICS) - Japan

705,024 10,510.0 11,280.4 12,660



Summit at Oak Ridge

• 200-petaflop  just became operational will put US back in #1
• 4,608 nodes each with:

o 2x Power9 CPUs 
o 6x NVIDIA Tesla V100 GPUs

• Mellanox dual-rail EDR InfiniBand network
o 200Gbps for each node

• GPUs alone will provide: 
o 215 peak petaflops at double precision
o 125 teraflops of mixed precision
o 3.3 exaflops of Tensor Core for deep learning
o 1.88 exaflops using the Tensor Core capability 

already demonstrated

Source Top500



Altamira @ IFCA in Santander

• HPC cluster
o 158 main compute nodes (2528 CPU cores)
o 5x GPU compute nodes (2x GPU cards per node)
o login server and several service servers

• Main compute nodes
o 2x Intel Sandybridge E5-2670 CPUs 8 cores 2.6 GHz 
o 64 GB of RAM memory (i.e. 4 GB/core)
o 500 GB local disk
o Scientific Linux (currently 6.2 version)

• The internal network in Altamira includes:
o Infiniband Network (FDR)
o used by parallel applications and data transfer

• Shared storage system
o GPFS (Global Parallel File System - GPFS) 
o 2 PB capacity



HPC Computing Cluster Components

• Set of computing machines
o Multi-core servers (x86_64, POWER, SPARC, ARM, etc)
o Machines must be homogeneous

• Interconnected by a network
o Ethernet or low latency interconnect

• Usually running Linux
o Uniform installation of Linux (e.g. CentOS 6)
o Centrally managed with fixed configurations  production

• Having a batch system
o Job queuing and scheduling
o Job execution and management

• High performance parallel file system
o POSIX like filesystem
o Provides shared data storage
o Aggregates storage servers for capacity, performance & resiliency



HPC Computing Cluster

Job 001

Job 002

Job 003

Job 004

Linux 
+

Lustre, GPFS,
BeeGFS

Infiniband
Omni-Path

Linux 
CentOS

Slurm
Torque
SoGE
LSF

Univa GE

Head nodesbatch/squeue/scancel
qsub/qstat/qdel

B
ATC

H
 SYSTEM

S
O

S
N

E
T

STO
R

A
G

E
SU

B
M

ITSSH

USER sometimes
over VPN



Compute Server

• 2x or more CPU sockets
• Memory
• Local disk storage

• Accelerators (optional)
• Fast network (low latency)
• Remote management 

processor
• Redundant PSUs



Non-uniform memory access (NUMA)

CPU0 CPU1

PCIe PCIe

• Groups processor with its own memory (NUMA node)
• Any processor can access the whole memory
• Access to local memory faster than access to remote memory



Batch system – example Slurm

slurmctld

slurmd slurmd slurmd slurmd

srun

squeue

scancel

scontrol

sinfo

$ srun --ntasks=2    --label    /bin/hostname
0: node14
1: node17

-- cpus-per-task=#
--nodes=#

Job 001
Job 002
Job 003
Job 004
Job 005
Job 006
Job 007

https://slurm.schedmd.com/

Head Node

USER



METADATADATA

Parallel Filesystem – Lustre example

OSS

OST

MDS

MDTOST

OSS

OST OST

Filesystem is mounted on cluster 
nodes from metadata servers

/data  /data  /data  /data  

Actual data
can be striped 
and mirrored



Low latency interconnects

• Very low communication delays
• High bandwidth
• Low communication overhead

• Can be used by:
o Parallel applications (exchange of application data)
o Access to data storage (e.g Lustre filesystem)

• They are Important to:
o Minimize communication and I/O wait time
o Maximize CPU compute capacity and utilization



Infiniband evolution



Infiniband evolution

SDR DDR QDR FDR10 FDR EDR HDR NDR XDR
Theoretical 

effective throug
hput, Gbs, per 

1x link

2 4 8 10 13.64 25 50 100 250

Speeds for 4x 
links (Gbit/s)

8 16 32 40 54.54 100 200 400 1000

Speeds for 8x 
links (Gbit/s)

16 32 64 80 109.08 200 400 800 2000

Speeds for 12x 
links (Gbit/s)

24 48 96 120 163.64 300 600 1200 3000

Adapter latency 
(microseconds)

5 2.5 1.3 0.7 0.7 0.5 less? ? ?

Year
2001,
2003

2005 2007 2011 2011 2014 2017
after 
2020

future 
(2023?)

Source Wikipedia

https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Gigabit_per_second


Infiniband evolution

Source Mellanox



Infiniband evolution

Source Mellanox



Omni-Path

Source Intel



Message Passing Interface - MPI

• Message-passing specification for parallel computing
o Enable communication between processes
o Bindings for C, C++, and Fortran90, Python, R, …

• Included in the specification:
o Point-to-point communication
o Communication contexts
o Process topologies
o The Info object
o One-sided communication
o External interfaces
o Process creation and management

o Datatypes
o Collective operations
o Process groups
o Parallel file I/O



Some MPI functions

• MPI_INIT(int *argc, char **argv) /* initialize at beginning */
• MPI_FINALIZE() /* terminate processing */

• MPI_COMM_SIZE(comm, size) /* number of processes */
• MPI_COMM_RANK(comm, id) /* get this process id */

• MPI_SEND(buf, count, datatype, dest, tag, comm) /* send msg */
• MPI_RECV(buf, count, datatype, source, tag, comm, status) /* receive */

• comm:  MPI_COMM_WORLD
• tag: MPI_ANY_TAG or message tag (int to identify the message content)
• source:  MPI_ANY_SOURCE or process id (rank)
• dest:      other id (rank)
• Type: MPI_CHAR, MPI_SHORT, MPI_INT, MPI_LONG, MPI_UNSIGNED_CHAR,

MPI_UNSIGNED_SHORT, MPI_UNSIGNED, MPI_UNSIGNED_LONG MPI_FLOAT,
MPI_DOUBLE, MPI_LONG_DOUBLE, MPI_BYTE, MPI_PACKED



MPI example

1. #include "mpi.h"

2. int main( int argc, char *argv[]) {
3. char message[20];
4. int myrank;
5. MPI_Status status;
6. MPI_Init( &argc, &argv );
7. MPI_Comm_rank( MPI_COMM_WORLD, &myrank );
8. if (myrank == 0)  {    /* code for process zero */
9. strcpy(message,"Hello, there");
10. MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);
11. }  else if (myrank == 1) {     /* code for process one */
12. MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
13. printf("received :%s:\n", message);
14. }
15. MPI_Finalize();
16. return 0;
17. }

destination rank

tag



HPC clusters and accelerators

GPGPUs
FPGAs

Xeon-Phi

• Can improve processing speed for certain operations
• GPGPUs and Xeon-Phi are ideal for vector processing
• GPGPUs very popular for Machine Learning 
• Sharing GPGPU accelerators by applications is non-trivial 

• One GPGPU per application instance

GPGPUs

App App App App App App App App Applications

Physical Hosts



HPC clusters and accelerators

• Remote access to the GPUs with rcuda
• Latency is an issue but in HPC we have low latency networks
• rcuda enables access to remote GPUs and even sharing
• A limited set of GPUs can be made available to cluster nodes

http://www.rcuda.net

GPGPUs
FPGAs

Xeon-Phi

GPGPUs

App App App App rcuda server Applications

Physical Hosts

rcuda server



HPC in the cloud



Cloud Computing

• Cloud Computing – Infrastructure as a Service (IaaS)
• access to pools of configurable system resources (and higher-level 

services) that can be provisioned with minimal management effort, 
over the network.

• Example: Amazon (AWS), private OpenStack deployments
• Instantiate machines on demand
• Access remote storage
• Flexibility
• Elasticity
• Pay-per-use

A
P

I,
 W

EB

VMs or
bare metal



HPC in the Cloud

• Instantiate HPC machines in a cloud infrastructure
o Machines can be physical (bare-metal) or virtual
o Entire cluster

 Submission machine (head-node)
 Compute nodes (elasticity as you go)
 Batch scheduler
 Low latency interconnect or fast network

o Individual machines
 Accelerators (GPGPUs etc)

• Providers
o public/commercial

o Amazon, MS Azure, Google cloud platform, IBM cloud, Oracle 
cloud, Alibaba cloud, …

o private/organizational
o Scientific, academic, and companies

Cloud Computing
Orchestration

Machine Learning



Infrastructure Manager

• IM is a Cloud Orchestrator:
– Supports TOSCA YAML with INDIGO-

DataCloud custom types.

• Input a description of the intended 
machines and their setup and 
configuration

• Deploys the whole set of machines

– Support a wide range of Cloud back-
ends:

• OCCI, OpenNebula and OpenStack
(using native APIs).

• Public providers: AWS, Azure, GCE.

• To perform hybrid deployments 
across multiple Cloud sites. Cloud Orchestration

Manage VMs

Start complex setups

http://www.grycap.upv.es/im



Elastic Cloud Computing Cluster (EC3)

http://www.grycap.upv.es/ec3

Cloud Orchestration

Start a complete cluster

It can be an HPC cluster



AWS cluster

http://www.grycap.upv.es/ec3

Proprietary solution

Specific to AWS



GPUs at Google

Previously:
Google renting of TPU board $6.50 per hour. 
180 ML teraflops and a minimal software stack based on the TensorFlow
framework.

125 ML 
teraflops



HPC in the cloud challenges

• Virtualization performance impact
• Full virtualization as used by many providers has 

performance overheads
• Sharing of host resources by other VMs
• May require bare metal or dedicated hosts

• Accessing accelerators
• If virtualization is used some performance may be lost when 

using multiple GPUs in the same host
• Availability of low latency interconnects

• Many providers do not provide low latency interconnects
• Who else is sharing the low latency network

• Accessing low latency interconnects
• Need to use SR-IOV



GPGPUs in the Cloud – Bare metal

• Running on hardware without virtualization – Bare metal
• Physical machines are configured and delivered by the cloud 

management framework
• Similar to the conventional HPC cluster
• The physical machines are installed on demand

GPGPUs

App App App App App App App App Applications

Physical Hosts



GPGPUs in the Cloud - Virtualization

GPGPUs

• Running on virtual machines
• VMs are delivered by the cloud management framework
• Need to pass the GPGPU to the VM
• GPGPU appears as a PCI device in the VM – PCI passthrough

App App App App App App App App Applications

Physical Hosts

Virtual Machines



Network in the cloud  - Virtualization

Virtual card (VF)

• Network virtualization will defeat performance
• Use SR-IOV to:

o Create virtual instances of the PCIe network cards (VF)
o Map them directly into the VMs
o Make sure the driver in the VM is the correct one for the VF

Physical Hosts

Virtual Machines

Physical card (PF)



HPC in the Cloud - Containers

GPGPUs

• Running on containers in the physical machines
• Need to pass the GPGPU Linux device to the container
• GPGPU appears as a device in the container
• Host network can be shared with the container
• Containers are much more lightweight than virtual machines

App App App App App App App App Applications

Physical Hosts

Containers



Containers



Applications vs computing resources

Desktop
Fedora 26

Portable
Ubuntu 18

HTC cluster
SL 6

HPC cluster
CentOS 6

Cloud
***

Application 1 
+ libs
+ Ubuntu 14

Application 2 
+ libs
+ CentOS 6

Application 3
+ Keras
+ Ubuntu16

Application 4
+ Theano
+ CentOS 7



PHYSICAL MACHINE

Virtualization

VIRTUALIZATION LAYER (SW / HW)

VIRTUAL MACHINES

• Valid approach in the cloud
• Not usually available in conventional HPC clusters



Common types of virtualization

HOST OS

GUEST OS

Paravirtualization Hardware assisted 
virtualization

paravirtualized

paravirtualized

hypervisor

HOST OS

•Both kernels changed
•Emulation replaced by
hypercalls to the host

•Ex. Xen

•Both kernels unchanged
•Hardware assisted 
requires CPU support

•Ex. KVM

GUEST OS GUEST OS



Rings and hardware virtualization

App

OS KERNEL

App

HYPERVISOR

App

OS KERNEL

App App

OS KERNEL

App

RING 0

RING 1

RING 2

RING 3

RING -1

• Rings are hierarchical protection domains within the CPU
• Lower rings have higher privileges in the processor
• Intel VT-x and AMD-V add a ring -1 for hypervisors



Containers (OS level virtualization)

isolation isolation

App A App B

OS

OS OS

Hypervisor / Host OS

App A App B

VM VM

C
o

n
ve

n
tio

n
al

virtu
alizatio

n

O
S le

ve
l 

virtu
alizatio

n

• Multiple environments via OS isolation features
• Isolation limits what processes can do and see
• Same OS kernel is shared and directly used by all containers
• More efficient than VMs (avoids virtualization and guest OS)

VM VM

HARDWARE HARDWARE



OS level virtualization advantages

• Less memory consumption 
– No need of  duplicated kernels and related processes
– No duplication of buffering and shared memory
– Less memory split across execution domains

• Faster I/O and execution and less latency
– Direct execution on top of one single kernel 
– No emulation, No hypercalls, No buffer copies

• Don’t need to run OS services in each isolated environment
– No need of duplicated NTP, SNMP, CRON, DHCP, SYSLOG, SMART, etc

• Much faster start–up times 
– No OS boot, smaller images to transfer and store

• Less management effort
– Only the host machine needs to be managed (many-core is great)



OS level virtualization also not new

Year File 

system 

isolation

I/O limits Memory 

limits

CPU 

quotas

Network 

isolation

Root 

priv 

isolation

chroot Most

unix 

systems

1982 Х

Jail FreeBSD 1998 X X X X X X

Linux-

VServer

Linux 2001 X X X X X X

Virtuozzo

Containers

Linux

Windows

2001 X X X X X X

Zones Solaris 2004 X X X X X X

OpenVZ Linux 2005 X X X X X X

HP

Containers

HP/UX 2007 X X X X X

LXC Linux 2008 X X X X X X

Docker Linux 2013 X X X X X X

Wikipedia, The Free Encyclopedia. Wikimedia Foundation



Linux kernel features

• Kernel namespaces: isolate system resources from process 
perspective
– Mount namespaces: isolate mount points
– UTS namespaces: hostname and domain isolation
– IPC namespaces: inter process communications isolation
– PID namespaces: isolate and remap process identifiers
– Network namespaces: isolate network resources
– User namespaces: isolate and remap user/group identifiers
– Cgroup namespaces: isolate Cgroup directories

• Seccomp: system call filtering
• Cgroups: process grouping and resource consumption limits
• POSIX capabilities: split/enable/disable root privileges
• chroot: isolated directory trees
• AppArmor and SELinux: kernel access control



Namespaces

You are already using them !

$ ls -l  /proc/$$/ns
total 0

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 cgroup -> cgroup:[4026531835]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 ipc -> ipc:[4026531839]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 mnt -> mnt:[4026531840]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 net -> net:[4026531993]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 pid -> pid:[4026531836]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 pid_for_children -> pid:[4026531836]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 user -> user:[4026531837]

lrwxrwxrwx 1 jorge jorge 0 Dez 5 21:02 uts -> uts:[4026531838]



Container

Therefore much more efficient

Runs programs as processes in a standard way

No emulation or hypervisors

Just process isolation



Containers

user processes

programs, services

namespaces

isolation

seccomp

system call filtering

selinux/apparmor

access control



Container putting it together

Mount
namespace

/

/data

mount
filesystem

/

/etc /bin /tmp mount
bind

Pid
namespace

mount  -o  loop

/mnt/x1234

CentOS 6 image

Program

Host System e.g. Ubuntu



Container putting it together

To create a container image:
– Add the required libraries, programs and data to the file-system
– Add the required programs to the container file-system

Can I run another Linux distribution using containers ?
– Yes sure
– The Linux kernel ABI remains largely unchanged across versions

Containers are usually started by the root user:
– Some operations require privileges
– Can be root user inside a container without affecting the host or the 

other containers (with POSIX capabilities, seccomp and namespaces)



LXC/LXD



Linux Containers project (LXC)

• First open source project to provide a toolset for containers

• Create and manage containers using the Linux Kernel features:
– liblxc library
– Bindings for several languages (python, ruby, lua, Go)
– Templates
– Tools to create/manage containers

• Tools:
– lxc-create, lxc-destroy, lxc-start, lxc-stop, lxc-execute, lxc-console, 
– lxc-monitor, lxc-wait, lxc-cgroup, lxc-ls, lxc-ps, lxc-info, lxc-freeze, 
– lxc-unfreeze

– Limitations:
– Requires considerable knowledge and effort



LXD

• Development from the original Linux Containers project
• Pushed and supported by Canonical (Ubuntu)

• Objective:
 Provide an environment to run complete Linux OS distributions
 Using Linux container support in the kernel
 More similar to an hypervisor
 Start the complete OS distribution
 Images are tarballs

• Limitations:
 Limited support and adoption beyond Ubuntu



docker



• Docker containers are oriented to services composition: 
– (Services or Applications) + (runtime environment)
– Self-contained and lightweight
– Run it  everywhere (Linux)

• DevOps integration of IT development and operations
– DevOps requires strong automation
– Developers: focus on what's inside the container
– Operations: may focus in the underlying infrastructure

$ docker run  -i  -t  centos:centos6
[root@28f89ada747e /]#  cat  /etc/redhat-release
CentOS release 6.8 (Final)



• Docker images can be fetched from the Docker Hub repository
• There are other Docker container repositories besides Docker Hub
• Very convenient to  transfer and share containers pull/push



• Docker container image is composed of:
I. Multiple file-system layers each one:

a. metadata
b. tarball with the files for the layer

II. Manifesto
III. Ancestry

• Layers have unique ids and can be shared by multiple images
• Layers decrease storage space and transfer time

• e.g. the same OS layer can be shared by many services and applications, 
avoiding duplication and downloading

Layer 1: Base OS

Layer 2: Packages

Layer 3: User software

Layer 4: Updates



Docker
• Common format to distribute and manage images:

– Layered file-system  based
– At the host level implemented by AUFS, device-mapper thin snapshots

– New images can be easily created from existing ones 
– Created by using Dockerfiles and docker build

Layer 1: centos:latest (ro)

Layer 2: apache + php (ro)

Layer 3: /var/www/app (ro)

Top layer  execution (rw)

Layers

FROM centos:centos6
RUN yum  install  –y  httpd php
COPY  /my/app /var/www/app
EXPOSE  80
ENTRYPOINT /usr/sbin/httpd
CMD [“-D”, “FOREGROUND”]

Dockerfile



• Layered file-system



Limitations

Require root privileges to install, setup and run

• Security concerns especially in multi-user environments

Docker API does not limit privileged actions

• Users with direct access to the API can do anything

• e.g: through the API users can mount local file systems, make 
devices accessible, erase disks etc.

Limiting design decisions for end users

• Docker is designed to be used as an hypervisor by operators 

• Difficult to use on batch systems because of process control 
and security (not suitable)



but ...

seccomppid namespace

mount namespace

ipc namespace net namespace

user namespace

Wizard with root powers

Container

Containers in general ...



udocker



udocker

• Run applications encapsulated in docker containers:
• without using docker
• without using privileges
• without system administrators intervention
• without additional system software

• and run:
• as a normal user
• with the normal process controls and accounting
• in interactive or batch systems 



INDIGO-DataCloud udocker

udocker in open source 

https://github.com/indigo-dc/udocker
• https://github.com/indigo-dc/udocker/tree/master
• https://github.com/indigo-dc/udocker/tree/devel

https://github.com/indigo-dc/udocker/tree/master/doc



udocker: install from github

$ curl  https://raw.githubusercontent.com/indigo-

dc/udocker/master/udocker.py > udocker 

$ chmod  u+rx  udocker 

$ ./udocker  install

or devel

Does not require compilation or system installation
Tools are delivered statically compiled



udocker: pull images from repository

$ udocker pull  ubuntu:14.04

Downloading layer: sha256:bae382666908fd87a3a3646d7eb7176fa42226027d3256cac38ee0b79bdb0491
Downloading layer: sha256:f1ddd5e846a849fff877e4d61dc1002ca5d51de8521cced522e9503312b4c4e7
Downloading layer: sha256:90d12f864ab9d4cfe6475fc7ba508327c26d3d624344d6584a1fd860c3f0fefa
Downloading layer: sha256:a57ea72e31769e58f0c36db12d25683eba8fa14aaab0518729f28b3766b01112
Downloading layer: sha256:783a14252520746e3f7fee937b5f14ac1a84ef248ea0b1343d8b58b96df3fa9f
Downloading layer: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4

Search for names and tags at:
https://hub.docker.com/



udocker: list local images

$ udocker images

REPOSITORY
msoffice:lastest .
iscampos/openqcd:latest .
fedora:25 .
docker.io/susymastercode/mastercode:latest .

ubuntu:14.04 .
ubuntu:16.10 .
ubuntu:latest .
indigodatacloud/disvis:latest .
jorge/private:latest .
busybox:latest .
jorge_fedora22_32bit:latest .
debian:oldstable .



udocker: create container from image

$ udocker create  --name=ub14 ubuntu:14.04

9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 container-id

container-alias



udocker: list containers

$ udocker ps

CONTAINER ID                         P M NAMES              IMAGE
9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 . W ['ub14']           ubuntu:14.04
5c7bd29b-7ab3-3d73-95f9-4438443aa6d6 . W ['myoffice']       msoffice:lastest
676eb77d-335e-3e9a-bf62-54ad08330b99 . W ['fedora_25']      fedora:25
c64afe05-adfa-39de-bf15-dcd45f284249 . W ['debianold']      debian:oldstable
7e76a4d7-d27e-3f09-a836-abb4ded0df34 . W ['ubuntu16', 'S']  ubuntu:16.10
9d12f52d-f0eb-34ae-9f0e-412b1f8f2639 . W ['f25']            fedora:25

container-id alias image



udocker: run container

$ udocker run  ub14

****************************************************************************** 
*                                                                            * 
*               STARTING 9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 * 
*                                                                            * 
****************************************************************************** 
executing: bash
root@nbjorge:/# cat /etc/lsb-release 
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04.5 LTS"
root@nbjorge:/# apt-get install firefox

udocker respects container

metadata, if the container has 

a default cmd to run it will be 

run otherwise starts a shell

root emulation



udocker: run container as yourself

$ udocker run  --user=jorge -v /home/jorge \
-e HOME=/jorge/home --workdir=/home/jorge ub14

Warning: non-existing user will be created

****************************************************************************** 
*                                                                            * 
*               STARTING 9fe2f9e7-ce37-3be5-b12d-829a3236d2a6                * 
*                                                                            * 
****************************************************************************** 
executing: bash
jorge@nbjorge:~$ id
uid=1000(jorge) gid=1000(jorge) groups=1000(jorge),10(uucp)
jorge@nbjorge:~$ pwd
/home/jorge
jorge@nbjorge:~$



udocker: run commands in the prompt

$ udocker run  --user=jorge --bindhome \
--hostauth ub14  /bin/bash  <<EOF

id; pwd
EOF

****************************************************************************** 
*                                                                            * 
*               STARTING 9fe2f9e7-ce37-3be5-b12d-829a3236d2a6                * 
*                                                                            * 
****************************************************************************** 
executing: bash
uid=1000(jorge) gid=1000(jorge) groups=1000(jorge),10(uucp)
/home/jorge



udocker: duplicate a container

$ udocker clone  --name=yy ub14

9fe2f9e7-ce37-3be5-b12d-829a3236d2a6

cloned container-id



udocker: export and import as image

$ udocker export  -o ub14.tar  ub14

$ udocker import  ub14.tar   myub14:latest

new image

name

import from 

tarball

export to 

tarball

• Only the container files are exported, metadata is lost
• This is interoperable with docker



udocker: export and import as container

$ udocker export  -o ub14.tar  ub14

$ udocker import  --tocontainer --name=xx  ub14.tar

new container 

alias

import from tarball

to container

export to 

tarball

• Only the container files are exported, metadata is lost
• Export is interoperable with docker



udocker: export and import as container

$ udocker export  --clone  -o ub14.tar  ub14

$ udocker import  --clone  --name=xx  ub14.tar

• Is imported as a container saving space and time
• Container metadata and execution mode are preserved
• This is NOT interoperable with docker

import clone

export clone



udocker: save and load images

$ docker save  centos:centos6 | udocker load

• Save from docker and load with udocker
• Piping stdout to stdin

load image with all layers and 

metadata

save image with all layers and 

metadata



udocker
How does it work ...



• Implemented
• python, C, C++, go

• Can run:
• CentOS 6, CentOS 7, Fedora >= 23
• Ubuntu 14.04, Ubuntu 16.04
• Any distro that supports python 2.7

• Components:
• Command line interface docker like
• Pull of containers from Docker Hub
• Local repository of images and containers
• Execution of containers with modular engines

udocker:



• Containers
• Are produced from the layers by flattening them
• Each layer is extracted on top of the previous
• Whiteouts  are respected, protections are changed
• The obtained directory trees are stored under 

~/.udocker/containers in the user home directory

udocker:

.udocker

repos

3745893245728937532

8874564763483752222

1245573456735639321

layers

manifest

TAG

v1, v2

image/tag

containers

d8a08182-2a7b-
3f6d-973e-
62f411060c2e

ROOTEXTRACT



• Execution
• chroot-like

udocker: directories and execution

container
tree in 

udocker

usr etc lib varhome

/

user

.udocker

images containerslayers bin lib

9fe2f9e7-ce37-
3be5-b12d-

829a3236d2a6

ROOT
/

container.
json

imagerepo.n
ame

execmode

bin

usr etc lib varbin

chroot to this 

directory 

becomes the 

new root for 

container 

processes

udocker

directory tree

$HOME/.udocker



• udocker supports several techniques to achieve the 
equivalent to a chroot without using privileges
• They are selected per container id via execution modes

udocker: Execution methods

Mode Base Description

P1 PRoot PTRACE accelerated (with SECCOMP filtering)  DEFAULT

P2 PRoot PTRACE non-accelerated (without SECCOMP filtering)

R1 runC rootless unprivileged using user namespaces

F1 Fakechroot with loader as argument and LD_LIBRARY_PATH

F2 Fakechroot with modified loader, loader as argument and LD_LIBRARY_PATH

F3 Fakechroot modified loader and ELF headers of binaries + libs changed

F4 Fakechroot modified loader and ELF headers dynamically changed

S1 Singularity where locally installed using chroot or user namespaces



udocker & Lattice QCD

Scaling 
performance as a 
function of the 
cores for the 
computation of 
application of the 
Dirac operator to 
a spinor field.

Using OpenMPI

OpenQCD is a 
very advanced 
code to run lattice 
simulations

udocker in P1 mode



udocker & Biomolecular complexes

Performance
with docker and 
udocker are the 
same and very 
similar to the 
host.

Using OpenCL and 
NVIDIA GPGPUs

DisVis is being 
used in 
production with 
udocker

Better performance with Ubuntu 16 container
udocker in P1 mode



udocker & Molecular dynamics

udocker P mode 
have lower 
performance
udocker F mode 
same as Docker.

Using OpenCL and 
OpenMP

Gromacs is widely 
used both in 
biochemical and 
non-biochemical 
systems. 

udocker in P1 mode
udocker in F3 modePTRACE SHARED LIB CALL



udocker & Phenomenology

Scanning  through 
large parameter 
spaces. High 
Throughput 
Computing

C++, Fortran, 
many authors,
legacy code

MasterCode
connects several
complex codes. 
Hard to deploy. 

Compiling Running

HOST 0% 0%

DOCKER 10% 1.0%

udocker 7% 1.3%

VirtualBox 15% 1.6%

KVM 5% 2.6%

Performance Degradation

udocker in P1 mode



udocker & Phenomenology

export MASTERDIR=/gpfs/csic_users/userabc/mastercode
export UDOCKER_DIR=$MASTERDIR/.udocker

udocker.py run --hostauth \
-v /home/csic/cdi/ica/mcpp-master \
-v /home/csic/cdi/ica \
-user=user001 \
-w /home/csic/cdi/ica/mcpp-master  mastercode \
/bin/bash -c "pwd; ./udocker-mastercode.sh"



https://github.com/indigo-dc/udocker

Thank you

IBM system 360 (1964)


