
DEEP-Hybrid-DataCloud is funded by the Horizon 2020 Framework
Programme of the European union under grant agreement number

777435

Jorge Gomes <jorge@lip.pt>

INDIGO-DataCloud
ENES climate models

EMSO seismic data analysis

Italy national museums digital library

Molecular dynamics analysis

DARIAH Zenodo based repositories

Algae RNA sequencing

ELIXIR Galaxy instances

LHC/CMS clusters on demandOphidia big analytics

DisVis and Powerfit LBT data archive

Molecular dynamics of proteins

udocker motivations

• Run applications encapsulated in docker containers:
• without using docker
• without using privileges
• without system administrators intervention
• without additional system software

• and run:
• as a normal user
• with the normal process controls and accounting
• in interactive or batch systems

• Empower end-users to run applications in containers

udocker: github

https://github.com/indigo-dc/udocker
• https://github.com/indigo-dc/udocker/tree/master

• https://github.com/indigo-dc/udocker/tree/devel

Download release from github

Install from github

$ curl https://raw.githubusercontent.com/indigo-

dc/udocker/master/udocker.py > udocker

$ chmod u+rx udocker

$./udocker install

or devel

Does not require compilation or system installation
Python plus tools delivered statically compiled

Linux
ptrace

shared lib
interception

rootless
namespaces

pull import load

container
layers

OS system
trees

create

run

u
d

o
ck

er
lo

ca
l r

ep
o

si
to

ry

extract

prepare

store

accesssingularity

Pull images from repository

$ udocker pull ubuntu:14.04

Downloading layer: sha256:bae382666908fd87a3a3646d7eb7176fa42226027d3256cac38ee0b79bdb0491
Downloading layer: sha256:f1ddd5e846a849fff877e4d61dc1002ca5d51de8521cced522e9503312b4c4e7
Downloading layer: sha256:90d12f864ab9d4cfe6475fc7ba508327c26d3d624344d6584a1fd860c3f0fefa
Downloading layer: sha256:a57ea72e31769e58f0c36db12d25683eba8fa14aaab0518729f28b3766b01112
Downloading layer: sha256:783a14252520746e3f7fee937b5f14ac1a84ef248ea0b1343d8b58b96df3fa9f
Downloading layer: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4

Search for names and tags at:
https://hub.docker.com/

List local images

$ udocker images

REPOSITORY
msoffice:lastest .
iscampos/openqcd:latest .
fedora:25 .
docker.io/susymastercode/mastercode:latest .

ubuntu:14.04 .
ubuntu:16.10 .
ubuntu:latest .
indigodatacloud/disvis:latest .
jorge/private:latest .
busybox:latest .
jorge_fedora22_32bit:latest .
debian:oldstable .

Create container from image

$ udocker create --name=ub14 ubuntu:14.04

9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 container-id

container-alias

List containers

$ udocker ps

CONTAINER ID P M NAMES IMAGE
9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 . W ['ub14'] ubuntu:14.04
5c7bd29b-7ab3-3d73-95f9-4438443aa6d6 . W ['myoffice'] msoffice:lastest
676eb77d-335e-3e9a-bf62-54ad08330b99 . W ['fedora_25'] fedora:25
c64afe05-adfa-39de-bf15-dcd45f284249 . W ['debianold'] debian:oldstable
7e76a4d7-d27e-3f09-a836-abb4ded0df34 . W ['ubuntu16', 'S'] ubuntu:16.10
9d12f52d-f0eb-34ae-9f0e-412b1f8f2639 . W ['f25'] fedora:25

container-id alias image

Execute a created container

$ udocker run ub14

**
* *
* STARTING 9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 *
* *
**
executing: bash
root@nbjorge:/# cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=14.04
DISTRIB_CODENAME=trusty
DISTRIB_DESCRIPTION="Ubuntu 14.04.5 LTS"

root@nbjorge:/# apt-get -o APT::Sandbox::User=root install firefox

udocker respects container

metadata, if the container has

a default cmd to run it will be

run otherwise starts a shell

root emulation

Execute container as yourself

$ udocker run --user=jorge -v /home/jorge \
-e HOME=/jorge/home --workdir=/home/jorge ub14

Warning: non-existing user will be created

**
* *
* STARTING 9fe2f9e7-ce37-3be5-b12d-829a3236d2a6 *
* *
**
executing: bash
jorge@nbjorge:~$ id
uid=1000(jorge) gid=1000(jorge) groups=1000(jorge),10(uucp)
jorge@nbjorge:~$ pwd
/home/jorge
jorge@nbjorge:~$

Shell scripts in the command line

$ udocker run --user=jorge --bindhome \
--hostauth ub14 /bin/bash -c “id; pwd”

$ udocker run --user=jorge --bindhome \
--hostauth ub14 /bin/bash <<EOF

id; pwd
EOF

Duplicate a container

$ udocker clone --name=yy ub14

9fe2f9e7-ce37-3be5-b12d-829a3236d2a6

cloned container-id

Export and import as tarballs as images

$ udocker export -o ub14.tar ub14

$ udocker import ub14.tar myub14:latest

giving a

new image

name

import from

tarball

export to

tarball

• Only the container files are exported, metadata is lost
• This is interoperable with docker

Export and import as container

$ udocker export -o ub14.tar ub14

$ udocker import --tocontainer --name=xx ub14.tar

new container

alias

import from tarball

to container

export to

tarball

• Only the container files are exported, metadata is lost
• Export is interoperable with docker
• Allows importing directly as container

Export and import as container

$ udocker export --clone -o ub14.tar ub14

$ udocker import --clone --name=xx ub14.tar

• Is imported as a container saving space and time
• Container metadata and execution mode are preserved
• This is NOT interoperable with docker

import clone

export clone

Export and import as container

$ udocker export --clone ub14 | \
ssh user@host \
“udocker import --clone --name=xx - ; udocker run xx”

• Export and import across nodes
• Piping stdout to stdin and minimizing I/O

import clone

export clone

run

Save and load images

$ docker save -o image.tar centos:centos6

$ udocker load -i image.tar

• Docker saves the image as a tarfile containing layers
• Udocker loads the image
• Can be used to transfer images without having to pull them

load image with all layers and

metadata

save image with all layers and

metadata

Save and load images

$ docker save centos:centos6 | udocker load

• Save from docker and load with udocker
• Piping stdout to stdin

load image with all layers and

metadata

save image with all layers and

metadata

Remove containers and images

$ udocker rm ub14
$ udocker rm 9fe2f9e7-ce37-3be5-b12d-829a3236d2a6

$ udocker rmi ubuntu:14.04

remove container by alias or id

remove image

How does it work ...

• Integrates several tools

• Can run:
• CentOS 6, CentOS 7, Fedora >= 23
• Ubuntu 14.04, Ubuntu 16.04
• Any distro that supports python 2.7

• Components:
• Command line interface docker like  Python
• Pull of containers from Docker Hub  Python
• Local repository of images and containers  Python
• Execution of containers with modular engines  several tools

udocker

Linux
ptrace

shared lib
interception

rootless
namespaces

pull import load

udocker local
repository

rootless
namespaces

• Images
• Layers and metadata are pulled with Docker Hub REST API
• Image metadata is interpreted to identify the layers
• Layers are stored in the use home directory under

~/.udocker/layers so that can be shared by multiple images

Images and layers

.udocker

repos

3745893245728937532

8874564763483752222

1245573456735639321

layers

manifest

TAG

v1, v2

3745893245728937532

image/tag

• Containers
• Are produced from the layers by flattening them
• Each layer is extracted on top of the previous
• Whiteouts are respected, protections are changed
• The obtained directory trees are stored under

~/.udocker/containers in the user home directory

Extract layers to create container

.udocker

repos

3745893245728937532

8874564763483752222

1245573456735639321

layers

manifest

TAG

v1, v2

image/tag

containers

d8a08182-2a7b-
3f6d-973e-
62f411060c2e

ROOTEXTRACT

• Execution
• chroot-like

Container execution

container
tree in

udocker

usr etc lib varhome

/

user

.udocker

images containerslayers bin lib

9fe2f9e7-ce37-
3be5-b12d-

829a3236d2a6

ROOT
/

container.
json

imagerepo.n
ame

execmode

bin

usr etc lib varbin

chroot to this

directory

becomes the

new root for

container

processes

udocker

directory tree

$HOME/.udocker

• udocker supports several techniques to achieve the
equivalent to a chroot without using privileges
• They are selected per container id via execution modes

Execution methods

Mode Base Description

P1 PRoot PTRACE accelerated (with SECCOMP filtering)  DEFAULT

P2 PRoot PTRACE non-accelerated (without SECCOMP filtering)

R1 runC rootless unprivileged using user namespaces

F1 Fakechroot with loader as argument and LD_LIBRARY_PATH

F2 Fakechroot with modified loader, loader as argument and LD_LIBRARY_PATH

F3 Fakechroot modified loader and ELF headers of binaries + libs changed

F4 Fakechroot modified loader and ELF headers dynamically changed

S1 Singularity where locally installed using chroot or user namespaces

• PRoot uses PTRACE to intercept system calls
• Pathnames are modified before the call

• To expand container pathnames into host pathnames

• Pathnames are modified after the call
• To shrink host pathnames to container pathnames

• The P1 mode uses PTRACE + SECCOMP filtering, to limit the
interception to the set of calls that manipulate pathnames
• We developed code to make it work on recent kernels
• P1 is the udocker default mode

• The P2 mode uses only PTRACE  therefore tracing all calls

• The impact of tracing depends on the system call frequency

PRoot engine (P1 and P2)

• runC is a tool to spawn containers according to the
Open Containers Initiative (OCI) specification
• In a very recent release 1.0 candidate 3, runC supports

unprivileged namespaces using the user namespace
• Unprivileged namespaces have many limitations but allow

execution in a contained Docker like environment
• Only run as root is supported
• Available devices are limited

• We added conversion of Docker metadata to OCI
• udocker can produce an OCI spec and run the

containers with runC transparently

runC engine (R1)

• Fakechroot is a library to provide chroot-like behaviour
• Uses the Linux loader LD_PRELOAD mechanism to:

• intercept library calls that manipulate pathnames
• change the pathnames similarly to PRoot

• It was conceived to support debootstrap in debian

• The OS in the host and in the chroot must be the same
• as the loader inside the chroot will by default load libraries

from the host system directories
• the loaders are statically linked and the pathnames inside are

absolute and non changeable

Fakechroot engine

• The loaders search for libraries:
• If the pathname has a / they are directly loaded
• If the pathname does not contain / (no directory specified) a

search path or location can be obtained from:
1. DT RPATH dynamic section attribute of the ELF

executable
2. LD LIBRARY PATH environment variable
3. DT RUNPATH dynamic section attribute of the ELF

executable
4. cache file /etc/ld.so.cache
5. default paths such as /lib64, /usr/lib64, /lib, /usr/lib

• The location of the loader itself is encoded in the
executables ELF header

Fakechroot engine

• The loader is encoded in the ELF header of executable
• is the executable that loads libraries and calls the actual executable
• also act as library providing functions and symbols

• Is essential that executables in the container are run with the
loader inside of the container instead of the host loader

• The mode F1 enforces the loader:
• passes it as 1st argument in exec* and similar calls shifting argv
• the loader starts first gets the executable pathname and its

arguments from argv and launches it
• Enforcement of locations is performed by filling in

LD_LIBRARY_PATH with the library locations in the container and
also extracted from the container ld.so.cache

Fakechroot engine (F1)

• The mode F2 changes the loader binary within the container:
• A copy of the container loader is made
• The loader binary is then edited by udocker
• The loading from host locations /lib, /lib64 etc is disabled
• The loading using the host ld.so.cache is disabled
• LD_LIBRARY_PATH is renamed to LD_LIBRARY_REAL

• Upon execution
• Invocation is performed as in mode F1
• The LD_LIBRARY_REAL is filled with library locations from the

container and its ld.so.cache
• Changes made by the user to LD_LIBRARY_PATH are intercepted

and pathnames adjusted to container locations and inserted in
LD_LIBRARY_REAL

Fakechroot engine (F2)

• The mode F3 changes binaries both executables and libraries
• The PatchELF tool was heavily modified to enable easier change of

• Loader location in ELF headers of executables
• Library path locations inside executables and libraries

• When modes F3 or F4 are selected the executables and libraries are
edited
• The loader location is change to point to the container
• The libraries location if absolute are changed to point to container
• The libraries search paths inside the binaries are changed to point

to container locations

• The loader no longer needs to be passed as first argument
• The libraries are always fetched from container locations

Fakechroot engine (F3 and F4)

• The LD_LIBRARY_REAL continues to be used in F3 and F4

• The mode F4 adds dynamic editing of executables and libraries
• This is useful with libraries or executables are added to the

container or created as result of a compilation

• Containers in modes F3 and F4 cannot be transparently moved
across different systems:
• the absolute pathnames to the container locations will likely

differ.
• In this case convert first to another mode before transfer
• or at arrival use: “setup --execmode=Fn --force”

Fakechroot engine (F3 and F4)

udocker & Lattice QCD

Scaling
performance as a
function of the
cores for the
computation of
application of the
Dirac operator to
a spinor field.

Using OpenMPI

OpenQCD is a
very advanced
code to run lattice
simulations

udocker in P1 mode

udocker & Biomolecular complexes

Performance
with docker and
udocker are the
same and very
similar to the
host.

Using OpenCL and
NVIDIA GPGPUs

DisVis is being
used in
production with
udocker

Better performance with Ubuntu 16 container
udocker in P1 mode

udocker & Molecular dynamics

udocker P mode
have lower
performance
udocker F mode
same as Docker.

Using OpenCL and
OpenMP

Gromacs is widely
used both in
biochemical and
non-biochemical
systems.

udocker in P1 mode
udocker in F3 modePTRACE SHARED LIB CALL

Upcoming

• Improving GPU driver integration

• Better support for MPI applications

• Porting to Python 3

• Better translation of “volume” directories

• Support for installation with pip

• Command line interface enhancements

• Improve root emulation

https://github.com/indigo-dc/udocker

Thank you

IBM system 360 (1964)

